2020 Annual Report, Galway Waste Disposal Site (Closed)

Provisional Certific ate of Approval No. A341205
March 5, 2021
Prepared for:
The Corporation of the Munic ipality of Trent Lakes

Cambium Reference: 10520-007

CAMBIUM INC.
866.217.7900
cambium-inc.com
Peterborough | Barie | Oshawa | Kingston

Executive Summary

The Galway Waste Disposal Site operates under the Provisional Certificate of Approval No. A341205. The Site is on Lot 19, Concession 13, geographic Township of Galway, Municipality of Trent Lakes. The Site is on Galway Road, approximately 14 km southeast of Kinmount and east of County Road 121. The Site operated as a natural attenuation landfill from the early 1970s until closure in 2001.

It is inferred that a component of radial groundwater flow travels west and north from the waste mound due to the competent bedrock and topography. Groundwater flow direction was determined to be primarily to the north in the area west of the waste mound.

All down-gradient monitors demonstrated stable conditions when compared to the background monitor. Impacts were only identified immediately adjacent the waste mound. Impacted groundwater was expected to discharge to surface west and northwest of the waste mound. The Galway waste disposal site complied with Ministry of the Environment, Conservation and Parks Reasonable Use Concept.

The surface water quality down-gradient and downstream of the waste mound was not adversely impacted by the site in 2020.

The site was operated in compliance with the Provisional Certificate of Approval.
Recommendations have been made regarding the future operation of the Galway waste disposal site and work to be completed in 2021.

Respectfully submitted,

Cambium Inc.

Heather Dzurko, M.Sc.
Solid Waste Specialist

Stephanie Reeder, P. Geo., C.E.T. Senior Project Manager

Table of Contents

1.0 Introduction 1
1.1 Site Location 1
1.2 Site Description 1
1.3 Scope of Work 1
2.0 Methodology 3
2.1 Groundwater Monitoring Program 3
2.2 Surface Water Monitoring Program 4
2.3 Landfill Gas Monitoring Program 5
2.4 Site Review and Operations Overview 6
3.0 Geological and Hydrogeological Context 7
3.1 Topography and Drainage 7
3.1.1 Precipitation Data 8
3.2 Hydrogeology 8
3.2.1 Groundwater Flow Direction 10
3.2.2 Conceptual Site Model 11
4.0 Results and Discussion 12
4.1 Quality Assurance / Quality Control. 12
4.2 Groundwater Quality 12
4.2.1 Background Groundwater Quality 13
4.2.2 Leachate Characteristics 13
4.2.3 Down-Gradient Groundwater Quality 14
4.2.4 Volatile Organic Compounds (VOCs) 15
4.2.5 Groundwater Compliance Assessment 15
4.2.6 Provincial Water Quality Objectives Assessment 16
4.3 Surface Water Quality 17
4.3.1 Background Surface Water Quality 17
4.3.2 Downstream Surface Water Quality 17
4.4 Landfill Gas Monitoring 19
4.5 Adequacy of Monitoring Program 19
5.0 Site Operations 21
5.1 Monitoring Well Security 21
5.2 Final Cover Integrity 21
5.3 Compliance with Provisional Certificate of Approval 21
6.0 Conclusions and Recommendations 22
References 23
Glossary of Terms 25
List of Embedded Tables
Embedded Table 1 Coordinates of Surface Water Stations 8
Embedded Table 2 Historical and 2020 Precipitation Data 8
Embedded Table 3 Summary of Groundwater PWQO Exceedances 16
List of Appended Figures
Figure 1 Regional Location Plan
Figure 2 Local Topography Plan
Figure 3 Existing Conditions
Figure 4 Groundwater Elevations
List of Appended Tables
Table 1 Environmental Monitoring Program
Table 2 Groundwater Elevation Data
Table 3 Groundwater Quality
Table 4 Groundwater Quality - VOC
Table 5 Surface Water Quality
Table 6 Landfill Gas Monitoring Data

List of Appendices

Appendix A Provisional Certificate of Approval No. A341205
Appendix B Field and Precipitation Data
Appendix C Laboratory Certificates of Analysis
Appendix D Photographs
Appendix E Well Records

1.0 Introduction

The Corporation of the Municipality of Trent Lakes (Municipality) retained Cambium Inc. (Cambium) to complete the 2020 annual monitoring program for the Galway closed waste disposal site (Site). The Site operates under Ontario Ministry of the Environment, Conservation and Parks (Ministry) Provisional Certificate of Approval (PC of A) No. A341205, most recently amended January 21, 1982 (Appendix A).

To aid in the understanding of the history and development of the Site, the following information is included digitally in the report package:

- Historic Water Quality (1997-2010) (WSP, 2017)

1.1 Site Location

The Site is on Lot 19, Concession I3, geographic Township of Galway, Municipality of Trent Lakes, County of Peterborough (Figure 1). The Site is on Galway Road, approximately 14 km southeast of Kinmount and east of County Road 121. The Universal Transverse Mercator (UTM) coordinates for the site entrance are Zone 17T, 695262m east, 496057m north.

1.2 Site Description

The Site is a natural attenuation landfill and is owned by the Municipality. The Site was in operation from the early 1970s until closure in 2001. When the Site was operating, it was approved as a landfill for the disposal of solid, non-hazardous domestic waste, scrap metal, and brush in accordance with PC of A No. A341205. The Site was approved for a total area of 1.2 ha.

Figure 2 illustrates the site layout and approved waste disposal footprint, as well as the property boundary. Existing site conditions are on Figure 3.

1.3 Scope of Work

The scope of the 2020 work program was based on the results of the 2019 monitoring program (Cambium, 2020) and included:

- Groundwater elevation monitoring
- Surface water and groundwater sampling and analysis
- Evaluation of groundwater quality at select monitoring wells against the Provincial Water Quality Objectives (PWQO)
- Evaluation of surface water quality against the PWQO and calculated surface water trigger values
- Preparation of this annual report

This report presents the results of the 2020 work program, provides an assessment of the current landfill impact of the Site on the surrounding groundwater and surface water environments, and a summary of the operational activities at the Site. Cambium has provided recommendations for the 2021 monitoring program and site operations based on the 2020 results and assessment.

2.0 Methodology

The 2020 work program was completed to maintain compliance with the ECA and Ministry requirements. As such, the environmental monitoring work program was completed consistent with Guidance Manual for Landfill Sites Receiving Municipal Waste (MOEE, 1993) and Monitoring and Reporting for Waste Disposal Sites, Groundwater and Surface Water, Technical Guidance Document (MOE, 2010).

Field tasks were completed following Cambium's Standard Operating Procedures developed from recognized standard procedures such as those listed above and Guidance on Sampling and Analytical Methods for use at Contaminated Sites in Ontario (MOEE, 1996). A health and safety program was developed for site-specific conditions and all Cambium personnel working on the project were familiarized and required to follow the identified protocol.

Surface water and groundwater samples were stored in coolers with freezer packs and maintained at less than $10^{\circ} \mathrm{C}$ during transport to Caduceon Environmental Laboratories (Caduceon) in Kingston, Ontario. Caduceon is accredited by the Canadian Association for Laboratory Accreditation Inc. for specific environmental tests listed in the scope of accreditation. Groundwater and surface water samples were submitted for analysis of the parameters outlined in Table 1.

2.1 Groundwater Monitoring Program

The following tasks were completed as part of the 2020 groundwater monitoring program:

- Prior to sampling, water levels were measured at each monitoring well using an electronic water level tape.
- The purge volume was calculated on-site during each monitoring event using the measured water level, well depth, and the borehole diameter. Each groundwater monitoring well to be sampled was purged of approximately three well bore volumes. For wells with low recovery, at least one saturated borehole volume was purged prior to sampling. Purged water was disposed on-site, down-gradient of each respective well.
- Samples were collected using dedicated polyethylene tubing equipped with inertial-lift foot valves.
- Groundwater samples for metals and dissolved organic carbon (DOC) analysis were field filtered.
- Field measurements were recorded for pH , conductivity, temperature, dissolved oxygen (DO), and oxygen reduction potential (ORP).

Groundwater samples were collected on April 21 and November 12 from the on-site monitoring wells listed below, with the following exceptions:

- DP2 was frozen in the spring
- DP5R was inaccessible in spring and autumn
- DP6 had insufficient volume for sample collection during the spring and autumn

Monitoring wells included in the groundwater monitoring program are shown on Figure 3. The UTM coordinates for the monitoring locations are in Table 2. Groundwater results are discussed in Section 4.2. Field data sheets are in Appendix B. Laboratory Certificates of Analysis are in Appendix C. Photographs of each monitoring location are in Appendix D.

- DP1R
- DP2
- DP3
- DP4
- DP5R
- DP6
- DP7

Blind duplicate groundwater samples were collected from DP4 in the spring and DP7 in the autumn as part of the Quality Assurance/Quality Control (QA/QC) program. As these field duplicates equate to at least 10% of the total samples collected, this is an adequate QA/QC program for groundwater. In addition to these samples, the laboratory completes internal QA/QC. The results of the QA/QC program are presented in Section 4.1.

2.2 Surface Water Monitoring Program

The following tasks were completed as part of the 2020 surface water monitoring program:

- Surface water samples were collected by immersing the sample container into the water body.
- When sample bottles were prefilled with preservatives, a clean bottle was used to collect and decant the water directly into the sample bottle.
- Surface water samples for mercury $(0.45 \mu \mathrm{~m})$ analysis were filtered by the laboratory.
- Field measurements including pH , conductivity, temperature, DO, and ORP were recorded at each sample location.
- Where possible, depth, width, and flow velocity measurements were collected at each surface water location.

Surface water samples were collected from SW1, SW2, SW3, SW4, SW5, and SW6 on April 21 and November 12, with the following exceptions:

- SW6 was dry in April and November
- SW2 was dry in November

Surface water sampling locations are shown on Figure 2. The UTM coordinates for the monitoring locations are in Embedded Table 1. Surface water results are discussed in Section 4.3. Field data sheets are in Appendix B. Laboratory Certificates of Analysis provided by Caduceon are in Appendix C. Photographs of each surface water sample location are in Appendix D.

Blind duplicate surface water samples were collected from station SW3 in April and November as part of the QA/QC program. As these field duplicates equate to 10% of the total samples obtained, this is an adequate QA/QC program for surface water. The results of the QA/QC program are presented in Section 4.1.

2.3 Landfill Gas Monitoring Program

Landfill gas (LFG) is not actively managed at the Site. The large, open site area and isolated location from the public supports passive landfill gas management, which allows generated
landfill gas to naturally disperse through the waste and naturally-permeable cover soil to the atmosphere.

Landfill gas monitoring is conducted on a yearly basis. The purpose of the monitoring is to assess compliance with Section 4.10 of Landfill Standards, A Guideline on the Regulatory and Approval Requirements for New and Expanding Landfilling Sites (MOEE, 1998), which states the concentration of methane gas in the subsurface may not exceed 2.5% by volume at the property boundary. If elevated methane concentrations are recorded, the LFG monitoring program should be expanded to include additional monitoring wells closer to the property boundary.

Landfill gas measurements were recorded at all groundwater monitors in 2020 with the exception of DP2 in April and DP5R in April and November. Landfill gas monitoring results are discussed in Section 4.4.

2.4 Site Review and Operations Overview

Site conditions were observed during site visits completed in April and November 2020. During these visits, the items listed below were inspected on accessed areas of the Site and observations noted in the field file. Site inspection results are presented in Section 5.0.

- Cover material condition
- Condition of access roads and access gates
- Status of monitoring well security

3.0 Geological and Hydrogeological Context

3.1 Topography and Drainage

The Site is in the Gull tertiary watershed. The land surrounding the landfill is mostly forested and unevaluated wetlands. An unnamed watercourse flows from southwest of Galway Road, across the western portion of the Site, flowing northeast and joining an unnamed tributary to Union Creek, 520 m northeast of the Site. The tributary discharges into Union Creek 800 m northeast of the Site. Union Creek flows west and eventually discharges into Burnt River and Cameron Lake. There are no provincially significant or evaluated wetlands within 500 m of the Site (Figure 2).

The topography at the Site is relatively flat and ranges from 320 m (southeast) to 315 m (northwest) above sea level (ASL). The surface water drainage systems on and near the Site can generally be characterized as stagnant, with intermittent flows of low volume occurring during periods of increased precipitation.

There are six surface water sampling locations in the approved surface water monitoring program (Table 1).

- SW3 is the background monitoring location. It is south of Galway Road and upstream of SW4 and SW5 on the same unnamed tributary. All three monitoring stations are off-site.
- SW1 is north of the waste mound and is primarily groundwater discharge.
- SW2 is in a low-lying wetland, east of the unnamed tributary flowing through the western portion of the Site.
- SW6 is a seep initially identified in 2012 at the toe of the waste mound between sampling stations SW1 and SW2.

The geospatial coordinates (NAD 83) for the surface water monitoring stations are in Embedded Table 1. Flow and discharge rates measured during the monitoring events are in Appendix B.

Embedded Table 1 Coordinates of Surface Water Stations

Surface Water Station	Northing	Easting
SW1	695255	4960699
SW2	695194	4960632
SW3	695151	4960538
SW4	695193	4960678
SW5	695289	4960755
SW6	695224	4960657

3.1.1 Precipitation Data

A review of the 2020 precipitation data for Sprucedale (Government of Canada, 2020) in comparison to the average precipitation data for 1981 to 2010 for Haliburton station (Government of Canada, 2015) indicated that the annual precipitation was normal; however, varied month to month. August and October received significantly more precipitation than normal, while February, May, June, and November received significantly less. The monthly precipitation, as well as the amount of precipitation during and in the three days prior to the sampling events is summarized in Embedded Table 2. Refer to Appendix B for field sheets and climate data.

Embedded Table 2 Historical and 2020 Precipitation Data

Sampling Date	Average Monthly Precipitation $(\mathbf{m m})$ $(1981-\mathbf{2 0 1 0})$	2020 Precipitation (mm)	Precipitation During and Prior to Sampling $(\mathbf{m m})$
April 21	75.6	73	17
November 12	116.4	74	12

3.2 Hydrogeology

The regional stratigraphy in the area of the Site consists of Precambrian bedrock overlain by till plain. The underlying Precambrian bedrock is composed of carbonate metasedimentary rocks. Drive point piezometers DP1 through DP5 were assumed to be installed in early 2002 and were reportedly shallow, installed in the overburden. Based on measured depths of these piezometers, the overburden thickness is greater than 4.3 m in the western portion of the Site.

DP1 and DP5 were reported to be destroyed in 2011 and were replaced with drive-point piezometers DP1R and DP5R in 2016. No installation details or borehole logs were provided in previous annual reports for DP1 through DP5R.

Due to the lack of background water quality information available for the Site, two background monitoring wells were installed by WSP in 2016 (DP6 and DP7) (WSP, 2017). Based on the borehole logs for these wells (Appendix E), the overburden thickness is 4.0 m in the southeast portion of the Site (DP6) and greater than 5.5 m in the southwest portion of the Site (DP7), corresponding to the topographic high and lows at the Site, respectively.

The overburden materials were reported to be fine sand with gravel and boulders on top of the hill (east), with a component of silt and organics (wood fragments noted) in the low-lying area west of the landfill. The bedrock encountered at monitor DP6 was reported to be hard marble. Since installation, this well has been dry or had insufficient volumes to sample indicating there is limited if any shallow bedrock aquifer intercepted by this well.

Based on a recent search of the available Ministry water well record database (Cambium, 2019), six water well records were identified within 500 m of the waste mound. Two of these records were for on-site test wells DP6 and DP7. The remaining four wells were domestic supply wells, were cross-gradient (northeast and southwest) of the waste mound, and ranged in depths from 35 m to 95 m below ground surface (mbgs). Water well records indicated that the overburden in the area was some combination of sand, stones, and topsoil, only 0.3 to 3.0 m thick. The bedrock was identified as white, black, and/or grey granite in all cases, with fractures only identified in one well at 90 mbgs. The adjacent water well records indicated that an aquifer suitable for water supply is not connected to the shallow overburden aquifer.

Five monitors installed at the Site are sampled as part of the groundwater monitoring program. Available borehole logs and monitoring well records are included in Appendix E.

- Monitoring well DP6 is southeast of the waste mound adjacent the property boundary and

Galway Road. This monitoring well is installed in the bedrock and represents background.

- Monitoring well DP7 is installed in the overburden and represents background. DP7 is in the southwest corner of the property, west of the waste mound, and adjacent the property boundary and Galway road.
- DP5R is adjacent to the northwest toe of the waste footprint. Historically, monitoring well DP5 was used to represent leachate characteristics at the Site. This monitor was destroyed in 2011 and replacement monitor DP5R was installed in 2016.
- DP1, north of the waste mound, was destroyed in 2011 and the replacement monitor DP1R was installed in 2016.
- Monitoring well DP2 is northwest of the waste mound between surface water monitoring stations SW2 and SW4, west of the on-site watercourse.
- Drive-point piezometer DP3 is west of the waste mound, west of the on-site watercourse, and southwest of piezometer DP2.
- Drive-point piezometer DP4 is southwest of the waste mound, south of piezometer DP5R, and east of the on-site watercourse.

3.2.1 Groundwater Flow Direction

The inferred direction of groundwater flow was through the shallow overburden primarily to the west and northwest of the Site (WSP, 2017). A well survey was completed in 2019 as recommended in the 2017 report (Cambium, 2019). All piezometers and wells were surveyed and the elevations are in Table 2. Groundwater elevations over time are shown in Figure 4. Groundwater flow direction was determined to be primarily to the north in the area west of the waste mound. North horizontal hydraulic gradients were estimated to be an average of 0.003 m / m in this area. Given the competent bedrock and topography, it was still inferred that there was a component of radial groundwater flow that travelled west and north from the waste mound.

Although no multi-level monitoring wells are installed on-site to determine vertical groundwater gradients, given the limited overburden, noted low permeable bedrock, shallow groundwater
elevations (i.e., close to surface), topography, and the presence of saturated soils/ponded water down-gradient of the waste mound for at least part of the year, it is speculated that shallow impacted groundwater will discharge to surface down-gradient of the landfill.

3.2.2 Conceptual Site Model

The Site is underlain by be fine sand with gravel, with a component of silt and organics. These materials are underlain by bedrock encountered at monitor DP6, reported to be hard marble.

It has inferred that the shallow overburden flow at the Site will travel north-northwest following the topography and overland surface flow. Given the lack of a shallow bedrock aquifer, it was inferred that the surface of bedrock is not fractured or connected to the overburden which ultimately restricts the vertical migration of leachate impacted groundwater. Furthermore, given the areas observed to be persistently wet in the low-lying western portion of the Site, groundwater is interpreted to discharge to surface north and northwest of the waste mound. Based on this conceptual model, primary receptors of leachate impacted water are surface water and overburden (till) aquifer groundwater users. As such, the primary receptors of site-related impact are the unnamed watercourse that traverses the Site and ultimately Union Creek.

4.0 Results and Discussion

Water quality results from the monitoring program are used to assess the existence, extent, and degree of impacts to the groundwater and surface water environments related to waste disposal site activities at the Site.

To ensure appropriate actions are in place to respond to degradation in surface water or groundwater quality beyond an acceptable level, site-specific trigger levels and contingency measures aid in the assessment of impacts from leachate contamination and help to prevent adverse impacts to the environments surrounding the waste disposal site.

This section presents the results of the 2020 monitoring program.

4.1 Quality Assurance / Quality Control

Results from the analyses completed on the blind duplicate QA/QC samples were evaluated.
Parameter concentrations were considered significantly different if the relative percent difference (RPD) between the duplicate and the parent samples was greater than 30% when at least one result was greater than five times the reported detection limit (RDL).

The duplicate groundwater and surface water analyses were compared to the originals.
Overall, the duplicate samples correlated well with the parent samples and met the data quality objective of 30%. Exceptions noted included:

- Iron at DP4 and SW3 in April
- COD at SW3 in November

Considering the low variation between the parent and samples, the groundwater and surface water results were interpreted with confidence.

4.2 Groundwater Quality

Groundwater analysis data for 2011 to 2020 are in Table 3 and Table 4. Data from 2002 to 2010 is included digitally with the report package.

To assess water quality impacts related to landfill site operations, the analytical results for groundwater samples collected on-site were compared to background water quality and historical data, and site compliance was assessed using the RUC (MOEE, 1994a). Furthermore, as shallow groundwater discharges to surface on-site, the results from all monitoring wells were also compared against the PWQO (MOEE, 1994b).

4.2.1 Background Groundwater Quality

When evaluating the impact of any waste disposal site on a groundwater resource, a reference point or value must be established to assist in determining the magnitude of the impact. In this respect, the quality of the groundwater that is not impacted by the waste disposal site operation (background water quality) should be used for comparison purposes. Given the locations of DP6 and DP7 Figure 3, the groundwater results for these monitoring wells represent background water quality at the Site.

Due to dry conditions and/or insufficient water volumes and no recovery, no samples have been collected from monitor DP6 to date.

Samples were first collected from well DP7 in 2017. In the preliminary assessment, road salt impacts were evident at this monitor (i.e., elevated concentrations of conductivity, total dissolved solids (TDS), chloride, and sodium). Elevated concentrations of metals were also attributed to road salt impacts (e.g., barium, arsenic, copper, lead, etc.). Salt influences the chemistry of the soil in which it infiltrates and can release metals and base cations (Health Canada, 2001). Elevated concentrations of some parameters were attributed to the presence of saturated organic soils such as DOC, chemical oxygen demand (COD), iron, manganese, and total phosphorus.

Water quality remained stable in 2020, with some minor seasonal fluctuation in parameter concentrations.

4.2.2 Leachate Characteristics

Historically, monitoring well DP5 was used to represent leachate characteristics at the Site. This monitor was destroyed in 2011 and replacement monitor DP5R was installed in 2016.

Although some parameter concentrations were similar between the two piezometers, some variations were noted such as decreased sulphate and increased lead concentrations. Variations were attributed to the time since Site closure and the disturbance of the overburden during installation.

Groundwater monitoring well DP5R was not sampled in 2020, as it was damaged and inaccessible. In 2019, the monitor was frozen during both spring and autumn sampling events. In 2018, water quality was generally stable. Notably, decreased concentrations of DOC and lead and increased concentrations of zinc were recorded in 2018.

Historically, no leachate indicator parameters (LIPs) were identified for the Site. An initial assessment of piezometer DP5R compared to the background piezometer DP7, indicated the water quality at this down-gradient monitor exhibited only minor impacts from leachate. The following parameters were slightly elevated: alkalinity, conductivity, TDS, hardness, calcium, and zinc. Conversely, the following concentrations were lower: barium, iron, and total phosphorus.

The down-gradient piezometer DP1R was installed in November 2018 to assess water quality down-gradient of the waste mound the north. Since installation, this monitor has had elevated concentrations of many typical leachate parameters compared to all other monitors on-site, including DP5R. Elevated parameters have included barium, boron, calcium, iron, manganese, magnesium, zinc, alkalinity, hardness, TDS, and conductivity. As such, this monitor is a better representation of the quality and strength of leachate at the Site. Results in 2020 were consistent with historic results.

4.2.3 Down-Gradient Groundwater Quality

The down-gradient water quality is monitored by piezometers DP2, DP3, and DP4.
Water quality at DP2 and DP3 have been very similar to each other and stable overtime despite some seasonal fluctuations. These monitors have exhibited elevated concentrations of iron, manganese, and DOC attributed to the wetland soils in which they are installed. Water quality at these locations have generally been comparable to or of better quality than
background monitor DP7 (no road salt impacts). This confirms that leachate impacted groundwater at piezometers DP1R and DP5R flows north-northeast or discharges to surface prior to reaching these locations. It is likely the tributary running through the property is a hydraulic divide and restricts lateral flow of impacted water west of the watercourse.

DP4 is cross-gradient to the waste mound. The water quality at this monitor has been similar to piezometers DP2, DP3, and DP7. Water quality at this monitor has been stable; this continued in 2020.

Overall, the assessment completed in 2020 indicated only piezometers DP1R and DP5R (assumed) were impacted by the Site. This confirms that the leachate impacted groundwater does not travel laterally much beyond the waste mound before being attenuated or discharging to surface. As it is inferred leachate impacted groundwater discharges to surface west and/or northwest of the waste mound, impacts are monitored by surface water locations SW2 and SW4 (Section 4.3).

4.2.4 Volatile Organic Compounds (VOCs)

Volatile organic compounds (VOCs) analysis is completed annually during the spring sampling event at monitor DP2. A VOC analysis was not completed at monitor DP2 in 2020, as the monitor was frozen during the sampling event. VOC concentrations have been less than the RDLs since at least 2016 (Table 4). Moving forward, VOC analysis should be completed at DP1R given that this well is impacted and DP2 is not.

4.2.5 Groundwater Compliance Assessment

The Ministry RUC (MOEE, 1994a) applies to operating waste disposal sites and sites closed post-1986. As the Site closed in 2001, the RUC applies to the Site.

Based on the existing hydrogeological model of the Site, shallow leachate impacted groundwater discharges to the surface water systems on-site. As dictated by the RUC, where groundwater provides baseflow to a surface water feature, this is the recognized reasonable use of the groundwater. Therefore, management approaches should be focused on the
receiving surface water feature. As such, compliance with Ministry policies for the protection of the environment should be focused to the surface water systems. Refer to Section 4.3.

4.2.6 Provincial Water Quality Objectives Assessment

As the hydrogeological conceptual model for the Site indicates that groundwater discharges to the surface for at least part of the year, the water quality at monitors DP1R, DP2, DP3, and DP4 were compared to the PWQO (MOEE, 1994b) This comparison aids in detecting potential impact to the surrounding surface water environments from leachate impacted groundwater. A summary of the PWQO criteria exceedances in April and November at the down-gradient piezometers is included in Embedded Table 3; monitor DP7 was included for reference. Full water quality data is provided in Table 3.

Embedded Table 3 Summary of Groundwater PWQO Exceedances

Monitor	April	November
DP1R	iron, lead, zinc, DO (low)	iron, lead, zinc, DO (low)
DP2	-	iron
DP3	iron	DO (low)
DP4	none	none
DP7 (Background)	iron, DO (low)	iron, DO (low)

With the exception of DP1R, all down-gradient concentration exceedances in 2020 were either consistent with or less than those in the up-gradient monitor DP7, indicating potential surface water impacts from the Site were unexpected west and southwest of the waste mound.

As discussed, piezometer DP1R was impacted and best represents leachate quality at the Site. Given the proximity to the waste mound and the groundwater flow direction, this was not unexpected. Impacts to adjacent surface water systems are monitored by station SW2 and discussed in Section 4.3.

Comparison of the groundwater results to the PWQO and assessment of potential impacts related to groundwater discharge to surface water should continue.

4.3 Surface Water Quality

The 2011 to 2020 surface water quality data are in Table 5. Data between 1997 and 2010 is included digitally in the report package. The surface water data have been compared with background water quality and historical data, and compliance was assessed using the PWQO (MOEE, 1994b).

4.3.1 Background Surface Water Quality

SW3 is on the north side of Galway Road, upstream of the Site, on an unnamed tributary. The water quality at this location is representative of background surface water conditions at the Site.

The water quality at SW3 has been characterized by low concentrations of most parameters with the occasional PWQO exceedances of iron, total phosphorus, and DO (low). Intermittent seasonal fluctuations have occurred at this monitoring station related to increased volumes of run-off influenced by above average precipitation.

Parameter concentrations were within historical ranges in 2020. This location continued to represent background water quality for the Site.

4.3.2 Downstream Surface Water Quality

Downstream surface water locations sampled in 2020 included SW1, SW2, SW4, and SW5. SW1 is directly north and downslope of the waste mound and up-gradient of the unnamed watercourse that flows through the Site. SW1 is ponded, stagnant, and poorly drained, likely not connected to the low-lying wet area or watercourse on-site.

Water quality at this location was extremely variable prior to 2017, in many cases ranging by an order of magnitude, seasonally and annually. Since 2017, the water quality at this location has been more stable and generally low to moderate concentrations, typically comparable to SW3. Historically, similarities between the water quality at this location and piezometer DP1R confirmed the connectivity between the shallow groundwater and ponded surface water adjacent the waste mound. In 2020, SW1 did not exhibit the same elevated concentrations of
parameters such as boron, chloride, iron, and zinc at DP1R. Additionally, all parameters met the PWQO at SW1.

SW2 is northwest and down-gradient of the waste mound, in a poorly drained ponded area, between piezometer DP1R and the on-site watercourse. Historic results indicated that concentrations of most parameters at SW2 were similar to the background concentrations at SW3. Occasionally elevated parameter concentrations were attributed to low flow conditions (e.g., iron, total phosphorus, occasional trace metal, DO (low), pH). Parameter concentrations were within historical ranges in 2020. Total phosphorus and iron exceeded the PWQO in April 2020.

SW4 is north and down-gradient of the waste mound and northern property boundary. The monitoring station is downstream of background sampling location SW3, on the same unnamed watercourse. Station SW4 monitors the on-site watercourse and whether impacts are migrating off site.

Water quality at SW4 exhibited water quality consistent with historic results with seasonal fluctuation in phosphorus and iron concentrations. Total phosphorus and iron exceeded the PWQO in April 2020.

SW5 is the farthest downstream and down-gradient sampling location from the waste mound. This location is on the same unnamed watercourse as background location SW3 and eventually discharges into a tributary to Union Creek. The water quality at monitoring location SW5 has been consistent with stations SW3 and SW4; this continued in 2020. All parameter concentrations met the PWQO criteria in 2020.

SW6 was an identified seep at the toe of the waste mound and was between SW1 and SW2. The seep was first observed in 2012 and was added to the monitoring program in 2013. Only one sample has been collected from this monitoring station since identified. A small seep was observed during the April monitoring event northeast of monitor DP1R in the general area of where SW6 was previously identified. Insufficient water was present at the seep to collect a sample. Annual inspections should continue to monitor this location. If a seep reappears, it should be sampled fi sufficient volume is present.

In the past, the only surface water sampling location exhibiting impacts from the Site was station SW1. Given that station SW1 is poorly drained and ponded, it is not expected that this location is connected to the downstream surface water systems. Water quality at this location has generally improved since 2017 and the concentrations at station SW1 generally met the PWQO indicating adverse harm to aquatic ecosystems was not expected downstream of the Site. Water quality remained stable and within historical concentration ranges in 2020 at all locations.

4.4 Landfill Gas Monitoring

LFG, specifically methane and carbon dioxide, is derived from the decomposition of organic wastes. Production of LFG from landfilled wastes normally reaches a maximum rate approximately two years after placement and may continue at this rate for many years. The biological decomposition process results in the generation of LFG until some period, likely decades, after the landfilling of that waste ceases.

Landfill gas measurements were recorded at accessible on-site drive point piezometers in conjunction with April and November 2020 monitoring program.

The monitoring results are presented in Table 6. LFG concentrations did not exceed 0.05\% methane by volume with the exception of DP7 which measured 2% methane by volume. Given that DP7 is the background well and separated from the waste mound by saturated soils, the reading at this location was not attributed to the Site. Regardless, this is only the second time that a monitor has recorded greater than 0.05% methane by volume since methane monitoring began in 2018.

Overall results indicate minimal LFG generation at the Site. LFG monitoring should be conducted on a yearly basis.

4.5 Adequacy of Monitoring Program

In an effort to have a refined and concise monitoring program at the Site, the existing monitoring program is reviewed annually to determine if it sufficiently monitors impacts at the Site. Following an assessment of the monitoring program in 2020, the monitoring program
continued to effectively characterize Site conditions, groundwater and any groundwater discharges from the Site, and includes data that relates to background water conditions. At the Site, in whole or in part:

- All fieldwork for groundwater and surface water investigations was done in accordance with the established SOPs (including internal/external QA/QC).
- All groundwater and surface water sampling for the monitoring period was successfully completed in accordance with the PC of A.
- The Site has an adequate buffer, contaminant attenuation zone (CAZ), and contingency plans in place.
- Design and operational measures, including size and configuration of the CAZ, were adequate to prevent potential human health impacts and impairments of the environment.
- The Site generally met compliance and assessment criteria.

The following recommendations were made following inclusion of the 2020 monitoring results.
Monitoring well DP5R is inaccessible for sampling due to a cross threaded cap. This well should be repaired in 2021 to provide access for monitoring.

VOC analysis should be completed at DP1R during subsequent monitoring events as it represents worst case leachate impacts at the Site.

5.0 Site Operations

The Site was closed to waste disposal operations in 2001. This section presents a summary of the site inspections performed in 2020.

5.1 Monitoring Well Security

As part of the 2020 groundwater monitoring program, all monitoring wells and piezometers listed in Table 1 complied with R.R.O. 1990 Regulation 903: Wells (Reg. 903) with the exception of DP5R. The well cap for DPR5 should be repaired or replaced in 2021 to permit access to the well. Photographs of the monitoring wells are included in Appendix D.

5.2 Final Cover Integrity

Inspections completed by Cambium staff during the 2020 site visits indicated the cover material was in good condition and no signs of erosion were present from the locations observed. A small seep was observed during the April monitoring event northeast of monitor DP1R. Insufficient water was present at the seep to collect a sample.

5.3 Compliance with Provisional Certificate of Approval

The Municipality managed the Site in compliance with the PC of A in 2020.

6.0 Conclusions and Recommendations

Based on the 2020 monitoring program, Cambium offers the following conclusions regarding the Galway waste disposal site.

- The inferred direction of groundwater flow direction was radially through the shallow overburden to the west and northwest from the waste mound to the low-lying wet area.

Flow from this unevaluated wetland was northerly.

- The down-gradient monitors demonstrated stable conditions. Only piezometers DP1R and DP5R were impacted by the Site. Leachate impacted groundwater does not travel laterally much beyond the waste mound before being attenuated or discharging to surface.
- All down-gradient monitors were compared to the PWQO. Results indicated that discharging groundwater will not cause adverse impacts to the surface water systems west and down-gradient of the Site.
- The Site complied with the Ministry Reasonable Use Policy.
- Surface water quality at the down-gradient and downstream locations were not adversely impacted by the Site.
- The waste mound was in good condition from the locations observed.
- A small seep was present north east of DPR1 in the vicinity of SW6 in the spring.
- The Municipality operated the Site in compliance with the PC of A.

Based on the results of the 2020 monitoring program, Cambium recommends the following:

- The groundwater and surface water monitoring program should continue as approved and outlined in Table 1; however, VOC analysis should be completed at DP1R given that this well is impacted and DP2 is not.
- The seep northeast of DPR1 (SW6) should be monitored and sampled if sufficient volume of water is present.
- DP5-R should be repaired.

References

Cambium. (2019). 2018 Annual Report, Galaway Waste Disposal Site .
Cambium. (2020). 2019 Annual Report, Galway Waste Disposal Site (closed). Peterborough.
CCME. (2011). Canadian Water Quality Guidelines for the Protection of Aquatic Life.
Winnipeg: Canadian Council of Ministers of the Environment.
Government of Canada. (2015). Canadian Climate Normals or Averages 1981-2010. Retrieved 2018, from National Climate Data and Information Archive:
http://climate.weather.gc.ca/climate_normals/results_1981_2010_e.htmI?stnID=4287\&a utofwd=1

Government of Canada. (2020). Historical Data. Retrieved January 2021, from Past weather and climate: http://climate.weather.gc.ca/historical_data/search_historic_data_e.html

Health Canada. (2001). Priority Substances List Assessment Report for Road Salts. Retrieved November 2, 2015, from http://www.hc-sc.gc.ca/ewh-semt/pubs/contaminants/psl2-Isp2/road_salt_sels_voirie/index-eng.php

MOE. (2010). Monitoring and Reporting for Waste Disposal Sites, Groundwater and Surface Water, Technical Guidance Document. Ministry of the Environment.

MOEE. (1993). Guidance Manual for Landfill Sites Receiving Municipal Waste . Ministry of the Environment and Energy.

MOEE. (1994a). Incorporation of the Reasonable Use Concept into MOEE Groundwater Management Activities. Ministry of the Environment and Energy.

MOEE. (1994b). Water Management: Policies, Guidelines, Provincial Water Quality Objectives. Ministry of the Environment and Energy.

MOEE. (1996). Guidance on Sampling and Analytical Methods for Use at Contaminated Site in Ontario. Ministry of the Environment and Energy.

MOEE. (1998). A Guideline on the Regulatory and Approval Requirements for New or Expanding Landfill Sites. Ministry of the Environment and Energy.

2020 Annual Report, Galway Waste Disposal Site (Closed) Lot 19, Concession 13, Galway Road, Trent Lakes The Corporation of the Municipality of Trent Lakes Cambium Reference: 10520-007

WSP. (2017). 2016 Annual Monitoring Report - Galway Closed Landfill Site. WSP Canada Inc.

March 5, 2021

Glossary of Terms

Active Face/Area

The portion of the landfill facility where waste is currently being deposited, spread and/or, compacted prior to the placement of cover material.

Adverse Environmental Impact

Any direct or indirect undesirable effect on the environment resulting from an emission or discharge that is caused or likely to be caused by human activity.

Annual Report

Report documenting the results of water quality, environmental quality, and operations monitoring for the year, or for a period as prescribed in the Certificate of Approval.
Approved Design and Operations Plan
The design of a landfill site and its facilities which have been submitted along with the application documents for which formal Ministry approval has been issued through the Certificate of Approval.

Approved Site or Facility

A landfill site/facility for which there is an existing and current Certificate of Approval.

Aquifer

A geologic unit (soil or rock) that contains sufficient saturated permeable material to yield measurable quantities of water to wells and springs.

Attenuation

Natural process through which the concentrations of landfill generated contaminants are reduced to safe levels.

Borehole

A hole drilled for soil sampling purposes.

Buffer Area

An area of land situated within the peripheral area surrounding an active filling area, but limited in extent to the property boundary, assigned to provide space for remedial measures, contaminant control measures, and for the reduction or elimination of adverse environmental impact caused by migrating contaminants.

Certificate of Approval

The license or permit issued by the Ministry for the operation of a landfill site. Issued to the owner of the site with conditions of compliance stated therein.

Contaminant

A compound, element, or physical parameter, usually resulting from human activity, or found at elevated concentrations that have or may have a harmful effect on public health or the environment.

Contaminant Migration Path

Route by which a contaminant will move from the site into adjacent properties or the natural environment. Usually a route that offers the least resistance to movement.

Contamination Attenuation Zone
The zone beneath the surface, located beyond the landfill site boundary, where contaminants will be naturally attenuated to predetermined levels. Also, see Reasonable Use Policy.

Contingency Plan

A documented plan detailing a co-ordinated course of action to be followed to control and remediate occurrences such as a fire, explosion, or release of contaminants in an uncontrolled manner that could threaten the environment and public health.

Cover Material

Material approved by the Ministry that is used to cover compacted solid waste. Usually, a soil with suitable characteristics for specific enduse.

Site Development Plan and Operations Report

Development and Operations Plan or Report is a document detailing the planned sequence of activities through the landfill site's active life, the control systems, site facilities and monitoring systems that are necessary. This document is required for obtaining a Certificate of Approval.

Design Capacity

The maximum amount of waste that is planned to be disposed of at a landfill site.

Detection Limit

Concentration under which a parameter cannot be quantitatively measured.

EAA or EA Act

Environmental Assessment Act, Revised Statutes of Ontario, 1990. One of the primary acts of legislation intended to protect, conserve, and wisely manage Ontario's environment through regulating planning and development.

Environmental Compliance Approval

The license or permit issued by the Ministry for the operation of a landfill site. Issued to the owner of the site with conditions of compliance stated therein.

EPA
Environmental Protection Act, Revised Status of Ontario, 1990. EPA is another of the primary pieces of Provincial legislation governing the protection of the natural environment of the Province.

Evapotranspiration

The evaporation of all water from soil, snow, ice, vegetation and other surfaces, including the water absorbed by plants, that is released to the atmosphere as vapour.

Fill Area

The area of a landfill site designed and designated for the disposal of waste.

Final Cover

Soil material or soil in combination with synthetic membranes, overlain by vegetation in a planned landscape, placed over a waste cell that has reached the end of its active life.

Groundwater

Subsurface water that occurs beneath the water table in soils and rocks that are fully saturated.

Hydraulic Conductivity

The rate of flow of water through a cross-section under a specific hydraulic gradient. It is a property of the geologic formation and the fluid, in hydrogeologic applications where the fluid is water (Units of $\mathrm{m} /$ day or cm / s).

Hydraulic Gradient

The head drop per unit distance in the direction of flow, the driving force for groundwater flow.

Hydrogeology

The study of subsurface waters and related geologic aspects of surface waters.

Impermeable Fill

Soil material that is placed as filling material that is sufficiently cohesive and fine grained to impede and restrict the flow of water through it.
In situ Testing
Testing done on-site, in the field, of material or naturally occurring substances in their original state.

Landfill Gas

Combustible gas (primarily methane and carbon dioxide) generated by the decomposition of organic waste materials.

Landfill Site

A parcel of land where solid waste is disposed of in or on land for the purposes of waste management.
Leachate
Water or other liquid that has been contaminated by dissolved or suspended particles due to contact with solid waste.
Leachate Breakout
Location where leachate comes to the ground surfaces; a seep or spring.

Limit of Filling

The outermost limit at which waste has been disposed of, or approved or proposed for disposal at a landfill.

Ministry

Ontario Ministry of the Environment, Conservation and Parks.

Monitoring

Regular or spontaneous procedures used to methodically inspect and collect data on the performance of a landfill site relating to environmental quality (i.e., air, leachate, gas, ground or surface water, unsaturated soils, etc.).

Monitoring Well

The constructed unit of casing (riser and screen) installed in a borehole.

Multi-Level Monitoring Well

More than one monitoring well installed at a given test well location.

Native Soil

Soil material occurring naturally in the ground at a location.

Natural Attenuation

Where contaminants are reduced to acceptable concentration levels by natural mechanisms (dilution, absorption onto the soil matrix, etc.), biological action, and chemical interaction.

Occupational Health and Safety Act

The primary act of legislation enacted by Ontario Ministry of Labour to regulate and control the safety in the workplace; also Occupational Health and Safety Act, Revised Statutes of Ontario, 1990.

Odour Control

Minimizing or eliminating the nuisance and undesirable impact of objectionable or unpleasant odours arising from waste disposal operations.

Open Burning

Burning any matter whereby the resultant combustion products are emitted directly to the atmosphere without passing through an adequate stack, duct, or chimney.

Operations Plan

A document detailing the waste disposal operations in a planned, and if necessary, a staged manner, that ensure compliance with regulatory provisions concerning the operations of a landfill site.
Operator (Site Operator)/Attendant
The individual or organization who, through ownership or under contract, manages and operates a landfill site for the purpose of waste disposal.

Owner

A person, persons, organization, or municipal authority who own a landfill facility or part of a landfill facility, and in whose name the Certificate of Approval for the site is issued.

Percolation

The movement of infiltrating water through soil.

Permeability

Often used interchangeable with hydraulic conductivity, but not strictly correct. Permeability is a property of the porous media only. Dependent upon media properties that affect flow, diameter, sphericity, roundness, and packing of the grains.

Piezometer

A well that intersects a confined aquifer.
Provisional Certificate of Approval (Provisional C of A) Same as Certificate of Approval.

Reasonable Use Policy

A policy developed by the Ministry to stipulate limits to the level of groundwater quality impairment that may be permitted to occur at site property boundaries, to allow the reasonable use of adjacent properties or land without adversely affecting public health and the environment.

Recharge Zone

An area where precipitation or surface run-off infiltrates into the ground and then, through natural percolation enters an aquifer.

Recycling

Sorting, collecting or processing waste materials that can be used as a substitute for the raw materials in a process or activity for the production of (the same or other) goods. For example, the "Blue Box" system, in-plant scrap handling, or raw material recovery systems. Recycling is also the marketing of products made from recycled or recycled materials.

Reduction (of waste or component of 3Rs program)

Those actions, practices, or processes that result in the production or generation of less waste.

Remedial Action

Corrective action taken to clean-up or remedy a spill, an uncontrolled discharge of a contaminant, or a breach in a facility or its operations, in order to minimize the consequent threat to public health and the environment.

Representative Sample

A small portion of soil, water, etc. which can be subjected to testing and analysis, that is expected to yield results that will reliably represent the identical characteristics of the source of the material or of a larger body of material.

Reuse (component of 3Rs program)

The use of an item again in its original form, for a similar purpose as originally intended, or to fulfil a different function.

Run-off

The part of precipitation (rainwater, snowmelt) that flows overland and does not infiltrate the surface material (soil or rock).

Saturated Zone

The zone of a subsurface soil where all voids are filled with water.

Sedimentation

The deposition of fine grained soil in an undesirable location, caused by the scouring, erosion and transportation of earth materials by surface run-off.

Sensitive Land Use

A land use where humans or the natural environment may experience an adverse environmental impact.

Settlement

The subsidence of the top surface and underlying waste of a landfill or waste cell as a result of densification under its own weight.

Site Capacity

The maximum amount of waste that is planned to be disposed (design capacity) or that has been disposed of at a landfill site.

Site Closure

The planned and approved cessation or termination of landfilling activities at a landfill site upon reaching its site capacity.

Site Life

The period from its inception through active period of waste disposal, to the time when a landfill site reaches its' site capacity, when it ceases to receive any further waste, including and up to closure.

Solid Waste

Any waste matter that cannot be characterized by its physical properties as a liquid waste product.

Solid Waste Disposal Site or Facility

A site or facility such as a landfill site where solid waste is disposed of.

Source Separation

The separation of various wastes at their point of generation for the purposes of recycling or further processing.

Standpipe

A monitoring well that intersects the water table aquifer.

Storm water

Run-off that occurs as a direct result of a storm event or thaw.

Storm water Detention

Control of storm water by the construction of impoundments of structures for the purpose of regulating storm water flows during high intensity rainfall events that would otherwise transport excessive amounts of sediment, cause soil erosion or cause flooding.

Stratigraphy

The geologic sub-structuring, usually layered with different distribution, deposition and age.

Surface Run-off (Drainage)

See Run-off.

Surface Water

Water that occurs at the earth's surface (ponds, streams, rivers, lakes, oceans).

Sub-Soil

Soil horizons below the topsoil.

Test hole

A hole drilled for soil sampling purposes.

Topsoil

The uppermost layer of the soil containing appreciable organic materials in mineral soils. Adequate fertility to support plant growth.

Unsaturated Zone

The zone (also vadose zone) in a porous sub-soil, where the voids are not completely water-filled, but contain some air-filled voids. Limited above by the land surface and below by the water table.

Vector

A disease carrier and transmitter; usually an insect or rodent.
VOC
Volatile organic compounds are those compounds that will readily volatilize (convert from liquid to gas phase) at conditions normally found in the environment.

Waste

Ashes, garbage, refuse, domestic waste, industrial waste, or municipal refuse and other used products as are designated or interpreted by the provisions of the Environmental Protection Act.

Waste Disposal Site (Facility)

Any land or land covered by water upon, into, in or through which, or building or structure in which, waste is deposited or processed and any machinery or equipment or operation required for the treatment or disposal of waste.

Waste Management System

All facilities, equipment and operations for the complete management of waste, including the collection, handling, transportation, storage, processing and disposal thereof, and may include one or more waste disposal sites.

Water Table

The water level attained in a monitoring well, which screens the surficial unconfined aquifer.

Water Balance

Amounts of water to various components in a system so that water entering the system equals the amount of water contained within and discharged out of a system.

Water Level

The level of water in a well.

Well Casing

The pipe that is used to construct a well.

Well Screen

A filtering device used to keep sediment from entering a well.

Wetlands

Areas where water is at, near or above the land surface long enough to be capable of supporting aquatic or hydrolytic vegetation, and which have soils indicative of wet conditions.

Abbreviations

RFP	Request For Proposal	ha	hectare
Ministry	Ontario Ministry of the Environment, Conservation and Parks	tonne	metric ton
MNRF	Ontario Ministry of Natural Resources and Forestry	t	metric tonne
ECA	Environmental Compliance Approval	$\mu \mathrm{S}$	microSiemens
EPA	Environmental Protection Act	ODWQS	Ontario Drinking Water Quality Standards
EAA	Environmental Assessment Act	PC of A	Provisional Certificate of Approval
MW	monitoring well	PWQO	Provincial Water Quality Objectives
masl	metres above sea level	TOC	Total Organic Carbon
pg	picogram	VOC	Volatile Organic Compound
ng	nanogram	BTU	British Thermal Unit
$\mu \mathrm{g}$	microgram	${ }^{\circ} \mathrm{C}$	temperature in degrees Celsius
g	gram	N/A	not available
kg	kilogram	\%	percent
L	Litre	cfm	cubic feet per minute
mg / L	milligrams per litre	ppmdv	part per million by dry volume
mm	millimetre	ppmv	part per million by volume
m	metre	ppm	part per million
km	kilometre	min	minimum
m^{3}	cubic metre	max	maximum
m^{2}	square metre		

Standard Limitations

Limited Warranty

In performing work on behalf of a client, Cambium relies on its client to provide instructions on the scope of its retainer and, on that basis, Cambium determines the precise nature of the work to be performed. Cambium undertakes all work in accordance with applicable accepted industry practices and standards. Unless required under local laws, other than as expressly stated herein, no other warranties or conditions, either expressed or implied, are made regarding the services, work or reports provided.

Reliance on Materials and Information

The findings and results presented in reports prepared by Cambium are based on the materials and information provided by the client to Cambium and on the facts, conditions and circumstances encountered by Cambium during the performance of the work requested by the client. In formulating its findings and results into a report, Cambium assumes that the information and materials provided by the client or obtained by Cambium from the client or otherwise are factual, accurate and represent a true depiction of the circumstances that exist. Cambium relies on its client to inform Cambium if there are changes to any such information and materials. Cambium does not review, analyze or attempt to verify the accuracy or completeness of the information or materials provided, or circumstances encountered, other than in accordance with applicable accepted industry practice. Cambium will not be responsible for matters arising from incomplete, incorrect or misleading information or from facts or circumstances that are not fully disclosed to or that are concealed from Cambium during the provision of services, work or reports.

Facts, conditions, information and circumstances may vary with time and locations and Cambium's work is based on a review of such matters as they existed at the particular time and location indicated in its reports. No assurance is made by Cambium that the facts, conditions, information, circumstances or any underlying assumptions made by Cambium in connection with the work performed will not change after the work is completed and a report is submitted. If any such changes occur or additional information is obtained, Cambium should be advised and requested to consider if the changes or additional information affect its findings or results.

When preparing reports, Cambium considers applicable legislation, regulations, governmental guidelines and policies to the extent they are within its knowledge, but Cambium is not qualified to advise with respect to legal matters. The presentation of information regarding applicable legislation, regulations, governmental guidelines and policies is for information only and is not intended to and should not be interpreted as constituting a legal opinion concerning the work completed or conditions outlined in a report. All legal matters should be reviewed and considered by an appropriately qualified legal practitioner.

Site Assessments

A site assessment is created using data and information collected during the investigation of a site and based on conditions encountered at the time and particular locations at which fieldwork is conducted. The information, sample results and data collected represent the conditions only at the specific times at which and at those specific locations from which the information, samples and data were obtained and the information, sample results and data may vary at other locations and times. To the extent that Cambium's work or report considers any locations or times other than those from which information, sample results and data was specifically received, the work or report is based on a reasonable extrapolation from such information, sample results and data but the actual conditions encountered may vary from those extrapolations.
Only conditions at the site and locations chosen for study by the client are evaluated; no adjacent or other properties are evaluated unless specifically requested by the client. Any physical or other aspects of the site chosen for study by the client, or any other matter not specifically addressed in a report prepared by Cambium, are beyond the scope of the work performed by Cambium and such matters have not been investigated or addressed.

Reliance

Cambium's services, work and reports may be relied on by the client and its corporate directors and officers, employees, and professional advisors. Cambium is not responsible for the use of its work or reports by any other party, or for the reliance on, or for any decision which is made by any party using the services or work performed by or a report prepared by Cambium without Cambium's express written consent. Any party that relies on services or work performed by Cambium or a report prepared by Cambium without Cambium's express written consent, does so at its own risk. No report of Cambium may be disclosed or referred to in any public document without Cambium's express prior written consent. Cambium specifically disclaims any liability or responsibility to any such party for any loss, damage, expense, fine, penalty or other such thing which may arise or result from the use of any information, recommendation or other matter arising from the services, work or reports provided by Cambium.

Limitation of Liability

Potential liability to the client arising out of the report is limited to the amount of Cambium's professional liability insurance coverage. Cambium shall only be liable for direct damages to the extent caused by Cambium's negligence and/or breach of contract. Cambium shall not be liable for consequential damages.

Personal Liability

The client expressly agrees that Cambium employees shall have no personal liability to the client with respect to a claim, whether in contract, tort and/or other cause of action in law. Furthermore, the client agrees that it will bring no proceedings nor take any action in any court of law against Cambium employees in their personal capacity.

2020 Annual Report, Galway Waste Disposal Site (Closed) Lot 19, Concession 13, Galway Road, Trent Lakes The Corporation of the Municipality of Trent Lakes Cambium Reference: 10520-007

Appended Figures

2020 Annual Report, Galway Waste Disposal Site (Closed) Lot 19, Concession 13, Galway Road, Trent Lakes The Corporation of the Municipality of Trent Lakes Cambium Reference: 10520-007

Appended Tables

Table Notes

RDL - reported detection limit for the current year
RUC - Reasonable Use Criteria
CWQG - Canadian Water Quality Guidelines for the Protection of Aquatic Life (CCME, 2011)
ODWQS - Ontario Drinking Water Quality Standards, O.Reg. 169/03
PWQO - Water Management, Policies, Guidelines, Provincial Water Quality Objectives (MOEE, 1994b)

PWQO for beryllium, cadmium, copper, and lead depend on hardness
PWQO for aluminum depends on pH and background concentration
NV - No Value
"-" Parameter not analyzed or measured
Unionized ammonia calculated using total ammonia and field data for pH and conductivity

Table 1 Environmental Monitoring Program

Location	Task	Frequency	Parameters
GROUNDWATER			
DP1R, DP2, DP3, DP4, DP5R, DP6 DP7 1 QA/QC Duplicate	- Measure groundwater levels - Groundwater sampling - Field Measurements (pH , temperature, conductivity, dissolved oxygen, ORP)	Twice (Spring and Autumn)	Alkalinity, Ammonia, Arsenic, Barium, Boron, Cadmium, Calcium, Chromium, Chloride, Conductivity, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Nitrate, Nitrite, TKN, pH, Phenols, Phosphorus by ICP, Potassium, Sodium, TDS, Sulphate, Zinc, COD, DOC, Hardness
DP2	- Groundwater sampling	Twice (Spring and Autumn)	BOD, TSS
DP2	- Groundwater sampling	Once (Spring)	Benzene, 1,4-Dichlorobenzene, Dichloromethane, Toluene, Vinyl Chloride
All existing monitors	Measure combustible gas \% by volume	Twice (Spring and Autumn)	Methane
SURFACE WATER			
SW1, SW2, SW3, SW4, SW5, SW6 1 QA/QC Duplicate	- Surface water sampling - Flow estimates - Field measurements (pH , temperature, conductivity, dissolved oxygen and ORP)	Twice (Spring and Autumn)	Alkalinity, Ammonia, Arsenic, Barium, Boron, Cadmium, Chloride, Chromium, Conductivity, Copper, Iron, Lead, dissolved mercury, Nitrate, Nitrite, TKN, pH, Total Phosphorous, Zinc, TSS, TDS, Sulphate, BOD, COD, Phenols, Hardness

[^0]
CAMBIUM

Table 2 - Groundwater Elevation Data

Monitor	DP1R	DP2	DP3	DP4	DP5R	DP6	DP7
Northing Easting	695211 4960647	695187 4960659	695138 4960615	695191 4960572	695198 4960580	695279 4960598	695110
Original Ground Elevation (masI)	315.60	315.43	315.43	315.42	315.25	323.21	316.07
Stick Up (m)	0.55	0.93	0.71	1.40	0.76	0.69	0.74
Depth (m)	2.08	5.20	4.60	4.49	1.71	10.70	6.20
Measuring Point (masI)	316.15	316.36	316.14	316.82	316.01	323.90	316.81
6-Jun-17	-	315.10	315.16	315.51	315.15	-	315.30
2-Oct-17	-	314.95	315.09	315.31	315.04	-	315.12
29-May-18	-	315.08	315.21	315.43	315.15	INS	315.31
12-Nov-18	315.07	315.09	315.20	315.41	315.16	INS	315.31
16-Apr-19	315.27	-	315.39	315.42	-	INS	315.53
14-Nov-19	315.07	315.06	-	315.39	-	INS	315.29
21-Apr-20	315.13	-	315.14	315.41	-	INS	315.47
12-Nov-20	315.06	315.09	315.24	315.38	-	INS	315.26

Elevations are geodetic.
Zone 17, accurate to +/- 5.0 metres
Shaded cells indicate monitors installed in the bedrock
INS means insufficient volumes to sample; no recovery

2020 Annual Report, Galway Waste Disposal Site Lot 19, Concession 13, Galway Road, Trent Lakes The Corporation of the Municipality of Trent Lakes Cambium Reference: 10520-007

Table 3 - Groundwater Quality

	Unit	RDL	PWQO	DP1R	DP1R	DP1R	DP1R	DP1R
				2018-11-12	2019-04-16	2019-11-14	2020-04-21	2020-11-12
Metals								
Arsenic (Filtered)	$\mu \mathrm{g} / \mathrm{L}$	0.1	5	6	3.6	2.5	2	1.9
Barium (Filtered)	$\mu \mathrm{g} / \mathrm{L}$	1		185	163	167	166	178
Boron (Filtered)	$\mu \mathrm{g} / \mathrm{L}$	5	200	79	84	110	96	136
Calcium (Filtered)	$\mu \mathrm{g} / \mathrm{L}$	20		182,000	170,000	189,000	166,000	186,000
Cadmium (Filtered)	$\mu \mathrm{g} / \mathrm{L}$	0.015	0.1\|0.5	0.025	0.069	0.039	0.048	0.022
Chloride	$\mu \mathrm{g} / \mathrm{L}$	500		5900	3300	3900	4600	6300
Chromium (III+VI) (Filtered)	$\mu \mathrm{g} / \mathrm{L}$	1	8.9	<1	<1	<1	<1	<1
Copper (Filtered)	$\mu \mathrm{g} / \mathrm{L}$	0.1	1\|5	0.2	0.1	1	0.8	3
Iron (Filtered)	$\mu \mathrm{g} / \mathrm{L}$	5	300	6330	27,100	26,300	29,300	44,200
Lead (Filtered)	$\mu \mathrm{g} / \mathrm{L}$	0.02	1/3\|5	1.97	15.1	2.62	6.6	5.57
Manganese (Filtered)	$\mu \mathrm{g} / \mathrm{L}$	1		1610	2360	2050	2120	1710
Magnesium (Filtered)	$\mu \mathrm{g} / \mathrm{L}$	20		11,400	8110	9710	8710	10,900
Mercury	$\mu \mathrm{g} / \mathrm{L}$			<0.02	<0.02	<0.02	-	-
Mercury (Filtered)	$\mu \mathrm{g} / \mathrm{L}$	0.02	0.2	-	-	-	<0.02	<0.02
Phosphorus total (P2O5)	$\mu \mathrm{g} / \mathrm{L}$		30	1970	40	-	-	-
Phosphorus (Filtered)	$\mu \mathrm{g} / \mathrm{L}$	100		-	-	<100	<100	<100
Potassium (Filtered)	$\mu \mathrm{g} / \mathrm{L}$	100		6100	4500	5300	4300	5300
Sodium (Filtered)	$\mu \mathrm{g} / \mathrm{L}$	200		13,500	9300	11,200	9700	11,600
Zinc (Filtered)	$\mu \mathrm{g} / \mathrm{L}$	5	20	28,300	39,800	51,700	41,000	30,400
Inorganics								
Alkalinity (as CaCO3)	mg/L	5		549	496	494	445	445
Hardness (as CaCO3) (Filtered)	mg/L	1		502	458	512	451	510
Solids - Total Dissolved (TDS)	mg/L	3		518	493	479	443	460
Solids - Total Suspended (TSS)	mg/L	3		-	-	-	-	-
Oxygen Demand - Chemical (COD)	mg/L	5		389	219	201	146	107
Organic Carbon - Dissolved (DOC) (Filtered)	mg/L	0.2		19	18.9	16	17.6	13
Oxygen Demand - Biological (BOD)	mg/L	3		-	-	-	-	-
Phenols (4AAP)	mg/L	0.002	0.001	0.004	<0.02	<0.002	<0.002	<0.002
Sulphate (Filtered)	mg/L	1		1	<1	<1	<1	<1
Ammonia	mg/L	0.01		1.37	0.61	0.53	0.28	0.35
Nitrate (as N)	mg/L	0.05		0.06	0.07	<0.05	0.06	0.08
Nitrite (as N)	mg/L	0.05		<0.05	<0.05	<0.05	<0.05	<0.05
Total Kjeldahl Nitrogen (TKN)	mg/L	0.1		9.3	3.6	1.9	1.6	1.1
Conductivity (lab)	$\mu \mathrm{S} / \mathrm{cm}$	1		972	928	904	841	870
pH (Lab)	-		6.5-8.5	7.71	7.29	7.47	7.44	7.54
Field								
DO (Field)	mg/L		5-50	8.71	4.72	8.53	3.64	4.77
Redox Potential (Field)	mV			138	164	13	68	206
Temp (Field)	${ }^{\circ} \mathrm{C}$			5.2	4	5.8	4	9.3
Conductivity (field)	$\mu \mathrm{S} / \mathrm{cm}$			920	950	1080	630	834
pH (Field)	-		6.5-8.5	6.85	6.9	7.68	6.75	6.85

2020 Annual Report, Galway Waste Disposal Site Lot 19, Concession 13, Galway Road, Trent Lakes The Corporation of the Municipality of Trent Lakes Cambium Reference: 10520-007

Table 3 - Groundwater Quality

	Unit	RDL	PWQO	$\begin{array}{\|l\|} \hline \text { DP2 } \\ \hline 2011-05-01 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { DP2 } \\ \hline 2012-05-01 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { DP2 } \\ \hline 2012-11-01 \end{array}$	$\begin{array}{\|l\|} \hline \text { DP2 } \\ \hline 2013-05-27 \end{array}$	$\begin{array}{\|l\|} \hline \text { DP2 } \\ \hline 2013-11-13 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { DP2 } \\ \hline 2014-06-01 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { DP2 } \\ \hline 2014-11-11 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { DP2 } \\ \hline 2015-04-13 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { DP2 } \\ \hline 2015-10-30 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { DP2 } \\ \hline 2016-04-27 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { DP2 } \\ \hline 2016-10-25 \\ \hline \end{array}$
Metals														
Arsenic (Filtered)	$\mu \mathrm{g} / \mathrm{L}$	0.1	5	-	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3
Barium (Filtered)	$\mu \mathrm{g} / \mathrm{L}$	1		73	78	75	70	70	71	71	76	65	73	80
Boron (Filtered)	$\mu \mathrm{g} / \mathrm{L}$	5	200	<10-20	<10	<10	<10	12	<10	<10	<10	<10	<10	10
Calcium (Filtered)	$\mu \mathrm{g} / \mathrm{L}$	20		84,000-85,000	84,700	87,500	87,600	81,000	85,200	88,300	87,400	86,600	81,700	85,700
Cadmium (Filtered)	$\mu \mathrm{g} / \mathrm{L}$	0.015	0.1\|0.5	<0.1	<2	<2	<2	<1	<1	<1	<1	<1	<1	<1
Chloride	$\mu \mathrm{g} / \mathrm{L}$	500		2000	1290	1640	1600	1220	1690	1520	1800	1820	1840	1380
Chromium (III+VI) (Filtered)	$\mu \mathrm{g} / \mathrm{L}$	1	8.9	<5	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3
Copper (Filtered)	$\mu \mathrm{g} / \mathrm{L}$	0.1	1\|5	<1	<3	<3	<3	<2	<2	<2	<2	<2	<2	<3
Iron (Filtered)	$\mu \mathrm{g} / \mathrm{L}$	5	300	1000-1500	591	354	945	356	345	488	303	171	495	450
Lead (Filtered)	$\mu \mathrm{g} / \mathrm{L}$	0.02	1/3\|5	<0.5	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Manganese (Filtered)	$\mu \mathrm{g} / \mathrm{L}$	1		100-110	110	97	93	29	83	85	102	83	86	80
Magnesium (Filtered)	$\mu \mathrm{g} / \mathrm{L}$	20		4500	4520	4470	4510	4300	4620	4660	4490	4450	4220	4390
Mercury	$\mu \mathrm{g} / \mathrm{L}$			-	-	-	-	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Mercury (Filtered)	$\mu \mathrm{g} / \mathrm{L}$	0.02	0.2	-	-	-	-	-	-	-	-	-	-	-
Phosphorus total (P2O5)	$\mu \mathrm{g} / \mathrm{L}$		30	-	130	100	140	100	130	150	130	100	140	80
Phosphorus (Filtered)	$\mu \mathrm{g} / \mathrm{L}$	100		-	-	-	-	-	-	-	-	-	-	-
Potassium (Filtered)	$\mu \mathrm{g} / \mathrm{L}$	100		-	3370	3430	3590	3470	3380	3440	3480	3320	3240	3270
Sodium (Filtered)	$\mu \mathrm{g} / \mathrm{L}$	200		-	3500	3440	3650	3550	3380	3600	3640	3240	3100	3200
Zinc (Filtered)	$\mu \mathrm{g} / \mathrm{L}$	5	20	<5	<5	<5	<5	16	8	<5	5	<5	<5	<5
Inorganics														
Alkalinity (as CaCO3)	mg/L	5		243-244	257	247	246	243	241	241	251	255	246	251
Hardness (as CaCO3) (Filtered)	mg/L	1		230	230	237	237	220	232	240	237	235	221	232
Solids - Total Dissolved (TDS)	mg/L	3		-	266	254	272	276	280	274	258	260	250	272
Solids - Total Suspended (TSS)	mg/L	3		-	-	-	-	-	13	10	<10	<10	<10	24
Oxygen Demand - Chemical (COD)	mg/L	5		-	15	29	42	16	26	27	15	29	11	12
Organic Carbon - Dissolved (DOC) (Filtered)	mg/L	0.2		5.4-5.9	6.9	7.1	10.2	7.5	6.3	6.6	11.7	5.6	6.7	6.3
Oxygen Demand - Biological (BOD)	mg/L	3		-	-	-	-	-	6	13	7	9	<5	<5
Phenols (4AAP)	mg/L	0.002	0.001	-	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Sulphate (Filtered)	mg/L	1		<1	0.22	0.67	0.58	0.27	0.16	0.12	0.32	0.24	0.14	0.36
Ammonia	mg/L	0.01		3.1-3.5	3.42	3.5	3.78	3.49	3.7	3.66	3.54	3.46	2.97	2.88
Nitrate (as N)	mg / L	0.05		<0.1	<0.05	0.09	<0.1	<0.05	0.07	<0.05	0.05	<0.1	0.06	0.06
Nitrite (as N)	mg/L	0.05		-	-	-	-	-	<0.05	<0.05	<0.05	<0.1	<0.05	<0.05
Total Kjeldahl Nitrogen (TKN)	mg/L	0.1		4.9-5	4.27	5.02	4.34	3.5	4.5	3.81	3.93	4.08	3.48	3.58
Conductivity (lab)	$\mu \mathrm{S} / \mathrm{cm}$	1		472-473	455	430	495	461	463	467	481	477	435	482
pH (Lab)	-		6.5-8.5	7.84-7.94	8.04	7.96	7.68	7.84	7.84	7.61	7.76	7.95	8.14	8.05
Field														
DO (Field)	mg/L		5-50	-	-	-	-	-	-	-	-	-	8.4	7.74
Redox Potential (Field)	mV			-	-	-	-	-	-	-	-	-	-	-
Temp (Field)	${ }^{\circ} \mathrm{C}$			-	-	-	-	-	-	-	-	-	6.5	7.4
Conductivity (field)	$\mu \mathrm{S} / \mathrm{cm}$			-	-	-	-	-	-	-	-	-	487	573
pH (Field)	-		6.5-8.5	-	-	-	-	-	-	-	-	-	7.9	8

2020 Annual Report, Galway Waste Disposal Site Lot 19, Concession 13, Galway Road, Trent Lakes The Corporation of the Municipality of Trent Lakes Cambium Reference: 10520-007

Table 3 - Groundwater Quality

	Unit	RDL	PWQO	DP2	DP2	DP2	DP2	DP2	DP2
				2017-06-06	2017-10-02	2018-05-29	2018-11-12	2019-11-14	2020-11-12
Metals									
Arsenic (Filtered)	$\mu \mathrm{g} / \mathrm{L}$	0.1	5	<0.7	<0.1	<0.1	<0.1	<0.1	<0.1
Barium (Filtered)	$\mu \mathrm{g} / \mathrm{L}$	1		79	79	80	77	81	80
Boron (Filtered)	$\mu \mathrm{g} / \mathrm{L}$	5	200	9	8	14	8	5	8
Calcium (Filtered)	$\mu \mathrm{g} / \mathrm{L}$	20		89,600	85,300	85,200	84,200	91,300	90,600
Cadmium (Filtered)	$\mu \mathrm{g} / \mathrm{L}$	0.015	0.1\|0.5	<0.014	<0.014	<0.015	<0.015	<0.015	<0.015
Chloride	$\mu \mathrm{g} / \mathrm{L}$	500		3400	1200	1400	1800	<500	1800
Chromium (III+VI) (Filtered)	$\mu \mathrm{g} / \mathrm{L}$	1	8.9	<1.1	<1	<1	<1	<1	<1
Copper (Filtered)	$\mu \mathrm{g} / \mathrm{L}$	0.1	1\|5	<0.3	0.4	1.9	<0.1	0.2	0.4
Iron (Filtered)	$\mu \mathrm{g} / \mathrm{L}$	5	300	878	256	293	255	330	335
Lead (Filtered)	$\mu \mathrm{g} / \mathrm{L}$	0.02	1/3\|5	<0.05	0.04	0.15	<0.02	<0.02	0.05
Manganese (Filtered)	$\mu \mathrm{g} / \mathrm{L}$	1		100	60	94	89	92	98
Magnesium (Filtered)	$\mu \mathrm{g} / \mathrm{L}$	20		4950	4970	4700	4690	4730	4770
Mercury	$\mu \mathrm{g} / \mathrm{L}$			<0.02	<0.02	<0.02	<0.02	<0.02	-
Mercury (Filtered)	$\mu \mathrm{g} / \mathrm{L}$	0.02	0.2	-	-	-	-	-	<0.02
Phosphorus total (P2O5)	$\mu \mathrm{g} / \mathrm{L}$		30	150	130	120	120	-	-
Phosphorus (Filtered)	$\mu \mathrm{g} / \mathrm{L}$	100		-	-	-	-	<100	<100
Potassium (Filtered)	$\mu \mathrm{g} / \mathrm{L}$	100		3300	3300	3300	3300	3400	3300
Sodium (Filtered)	$\mu \mathrm{g} / \mathrm{L}$	200		3700	3700	3600	3500	3400	3400
Zinc (Filtered)	$\mu \mathrm{g} / \mathrm{L}$	5	20	<5	5	6	<5	6	9
Inorganics									
Alkalinity (as CaCO3)	mg/L	5		252	246	237	250	232	223
Hardness (as CaCO3) (Filtered)	mg/L	1		244	234	232	230	248	246
Solids - Total Dissolved (TDS)	mg/L	3		266	262	244	238	237	238
Solids - Total Suspended (TSS)	mg/L	3		26	28	24	5	23	23
Oxygen Demand - Chemical (COD)	mg/L	5		44	32	50	19	33	26
Organic Carbon - Dissolved (DOC) (Filtered)	mg/L	0.2		7.7	8.6	7	9.2	7.8	6.3
Oxygen Demand - Biological (BOD)	mg/L	3		7	2	5	7	3	<3
Phenols (4AAP)	mg/L	0.002	0.001	0.005	<0.001	<0.001	0.004	<0.002	<0.002
Sulphate (Filtered)	mg/L	1		2	<1	<1	<1	<1	<1
Ammonia	mg/L	0.01		3.33	3	3.4	3.46	3.82	3.16
Nitrate (as N)	mg/L	0.05		0.15	0.28	0.08	<0.05	<0.05	<0.05
Nitrite (as N)	mg/L	0.05		0.31	<0.05	<0.05	<0.05	<0.05	<0.05
Total Kjeldahl Nitrogen (TKN)	mg/L	0.1		4	3.5	4.2	3.9	3.8	3.8
Conductivity (lab)	$\mu \mathrm{S} / \mathrm{cm}$	1		484	477	471	461	458	461
pH (Lab)	-		6.5-8.5	7.73	7.64	7.97	7.58	7.95	7.65
Field									
DO (Field)	mg/L		5-50	11.12	3.31	5.24	2.91	9.19	6.27
Redox Potential (Field)	mV			-4	151	84	163	48	178
Temp (Field)	${ }^{\circ} \mathrm{C}$			9.8	8.1	8	6.4	4.7	7.7
Conductivity (field)	$\mu \mathrm{S} / \mathrm{cm}$			480	520	420	510	560	326
pH (Field)	-		6.5-8.5	7.28	7.55	7.07	6.89	7.91	7.25

2020 Annual Report, Galway Waste Disposal Site Lot 19, Concession 13, Galway Road, Trent Lakes The Corporation of the Municipality of Trent Lakes Cambium Reference: 10520-007

Table 3 - Groundwater Quality

	Unit	RDL	PWQO	$\begin{array}{\|l\|} \hline \text { DP3 } \\ \hline 2011-05-01 \\ \hline \end{array}$	\mid DP3 $2012-05-01$	$\begin{array}{\|l\|} \hline \text { DP3 } \\ \hline 2012-11-01 \end{array}$	$\begin{array}{\|l\|} \hline \text { DP3 } \\ \hline 2013-05-27 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { DP3 } \\ \hline 2013-11-13 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { DP3 } \\ \hline 2014-06-01 \end{array}$	$\begin{array}{\|l\|} \hline \text { DP3 } \\ \hline 2014-11-01 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { DP3 } \\ \hline 2015-10-30 \end{array}$	$\begin{array}{\|l\|} \hline \text { DP3 } \\ \hline 2016-04-27 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { DP3 } \\ \hline 2016-10-25 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { DP3 } \\ \hline 2017-06-06 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { DP3 } \\ \hline 2017-10-02 \\ \hline \end{array}$
Metals															
Arsenic (Filtered)	$\mu \mathrm{g} / \mathrm{L}$	0.1	5	-	<3	<4	<3	<3	<3	<3	<3	<3	<3	<0.7	<0.1
Barium (Filtered)	$\mu \mathrm{g} / \mathrm{L}$	1		63	69	66	66	59	61	61	55	66	66	68	65
Boron (Filtered)	$\mu \mathrm{g} / \mathrm{L}$	5	200	<10	<10	14	<10	12	11	<10	<10	<10	12	12	13
Calcium (Filtered)	$\mu \mathrm{g} / \mathrm{L}$	20		70,000	72,100	73,500	75,800	71,200	72,600	75,800	70,700	73,700	71,100	73,500	73,700
Cadmium (Filtered)	$\mu \mathrm{g} / \mathrm{L}$	0.015	0.1\|0.5	<0.1	<2	<3	<2	<1	<1	<1	<1	<1	<1	<0.014	<0.014
Chloride	$\mu \mathrm{g} / \mathrm{L}$	500		2000	1440	1760	1800	1190	1470	1480	1840	1880	1600	3300	1100
Chromium (III+VI) (Filtered)	$\mu \mathrm{g} / \mathrm{L}$	1	8.9	<5	<3	<3	<3	<3	<3	<3	<3	<3	3	7.6	<1
Copper (Filtered)	$\mu \mathrm{g} / \mathrm{L}$	0.1	1\|5	<1	<3	<3	<3	<2	<2	<2	<2	<2	<3	<0.3	0.1
Iron (Filtered)	$\mu \mathrm{g} / \mathrm{L}$	5	300	2700	2790	2830	2910	922	2740	1640	1780	3900	3160	3570	2140
Lead (Filtered)	$\mu \mathrm{g} / \mathrm{L}$	0.02	1/3\|5	<0.5	<2	<3	<2	<2	<2	<2	<2	<2	<2	<0.05	<0.02
Manganese (Filtered)	$\mu \mathrm{g} / \mathrm{L}$	1		130	136	118	129	118	115	104	103	136	123	132	112
Magnesium (Filtered)	$\mu \mathrm{g} / \mathrm{L}$	20		4500	4540	4570	4780	4620	4690	4740	4350	4550	4400	4880	5160
Mercury	$\mu \mathrm{g} / \mathrm{L}$			-	-	-	-	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.02	<0.02
Mercury (Filtered)	$\mu \mathrm{g} / \mathrm{L}$	0.02	0.2	-	-	-	-	-	-	-	-	-	-	-	-
Phosphorus total (P2O5)	$\mu \mathrm{g} / \mathrm{L}$		30	-	170	150	170	100	180	150	170	<50	180	510	170
Phosphorus (Filtered)	$\mu \mathrm{g} / \mathrm{L}$	100		-	-	-	-	-	-	-	-	-	-	-	-
Potassium (Filtered)	$\mu \mathrm{g} / \mathrm{L}$	100		-	2390	2380	2740	2390	2350	2500	2340	2460	2340	2200	2300
Sodium (Filtered)	$\mu \mathrm{g} / \mathrm{L}$	200		-	3940	3830	4460	3830	3780	4030	3780	3760	3790	4200	4000
Zinc (Filtered)	$\mu \mathrm{g} / \mathrm{L}$	5	20	<5	<5	13	<5	<5	<5	<5	<5	7	<5	<5	<5
Inorganics															
Alkalinity (as CaCO3)	mg/L	5		205	223	215	215	210	209	218	220	226	220	218	217
Hardness (as CaCO3) (Filtered)	mg/L	1		190	199	200	209	197	201	209	194	203	196	204	205
Solids - Total Dissolved (TDS)	mg/L	3		-	266	200	250	246	254	250	244	234	240	233	232
Solids - Total Suspended (TSS)	mg/L	3		-	-	-	-	-	19	17	21	26	24	-	-
Oxygen Demand - Chemical (COD)	mg/L	5		-	18	39	45	16	15	19	13	15	11	44	30
Organic Carbon - Dissolved (DOC) (Filtered)	mg/L	0.2		4.7	9.4	7.1	5.7	6.4	5.3	6	6.3	7.1	6.6	7.5	10.3
Oxygen Demand - Biological (BOD)	mg/L	3		-	-	-	-	-	7	8	5	5	9	-	-
Phenols (4AAP)	mg/L	0.002	0.001	-	<0.001	<0.002	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.003	<0.001
Sulphate (Filtered)	mg/L	1		<1	0.14	<0.11	<0.2	0.12	0.15	<0.1	<0.1	0.93	<0.1	<1	<1
Ammonia	mg/L	0.01		2.5	2.8	2.73	2.88	2.57	2.83	2.73	3.14	2.84	2.75	2.73	2.68
Nitrate (as N)	mg/L	0.05		0.1	<0.05	<0.06	<0.1	<0.05	0.06	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Nitrite (as N)	mg/L	0.05		-	-	-	-	-	<0.05	<0.05	<0.05	<0.05	<0.05	0.32	<0.05
Total Kjeldahl Nitrogen (TKN)	mg/L	0.1		3.2	3.47	4.12	3.18	2.66	3.35	2.83	3.36	3.04	3.76	6.2	3.1
Conductivity (lab)	$\mu \mathrm{S} / \mathrm{cm}$	1		402	394	378	426	401	412	402	410	393	422	424	422
pH (Lab)	-		6.5-8.5	7.9	8.02	7.89	7.79	7.8	7.78	7.93	7.88	8.18	8.02	7.79	7.9
Field															
DO (Field)	mg/L		5-50	-	-	-	-	-	-	-	-	9.4	8.7	11.65	10.2
Redox Potential (Field)	mV			-	-	-	-	-	-	-	-	-	-	61	144
Temp (Field)	${ }^{\circ} \mathrm{C}$			-	-	-	-	-	-	-	-	6.4	7.6	9	8.9
Conductivity (field)	$\mu \mathrm{S} / \mathrm{cm}$			-	-	-	-	-	-	-	-	433	397	430	460
pH (Field)	-		6.5-8.5	-	-	-	-	-	-	-	-	8	8.1	7.59	7.77

2020 Annual Report, Galway Waste Disposal Site Lot 19, Concession 13, Galway Road, Trent Lakes The Corporation of the Municipality of Trent Lakes Cambium Reference: 10520-007

Table 3 - Groundwater Quality

	Unit	RDL	PWQO	DP3	DP3	DP3	DP3	DP3
				2018-05-29	2018-11-12	2019-04-16	2020-04-21	2020-11-12
Metals								
Arsenic (Filtered)	$\mu \mathrm{g} / \mathrm{L}$	0.1	5	<0.1	<0.1	<0.1	<0.1	0.2
Barium (Filtered)	$\mu \mathrm{g} / \mathrm{L}$	1		60	64	62	64	63
Boron (Filtered)	$\mu \mathrm{g} / \mathrm{L}$	5	200	19	9	13	12	12
Calcium (Filtered)	$\mu \mathrm{g} / \mathrm{L}$	20		64,400	71,900	74,000	68,400	77,300
Cadmium (Filtered)	$\mu \mathrm{g} / \mathrm{L}$	0.015	0.1\|0.5	<0.015	<0.015	<0.015	<0.015	<0.015
Chloride	$\mu \mathrm{g} / \mathrm{L}$	500		1000	2100	1400	1600	1800
Chromium (III+VI) (Filtered)	$\mu \mathrm{g} / \mathrm{L}$	1	8.9	<1	<1	<1	<1	<1
Copper (Filtered)	$\mu \mathrm{g} / \mathrm{L}$	0.1	1\|5	0.1	<0.1	0.1	0.9	2
Iron (Filtered)	$\mu \mathrm{g} / \mathrm{L}$	5	300	2220	1710	3400	3470	107
Lead (Filtered)	$\mu \mathrm{g} / \mathrm{L}$	0.02	1/3\|5	<0.02	<0.02	<0.02	0.03	0.08
Manganese (Filtered)	$\mu \mathrm{g} / \mathrm{L}$	1		114	120	124	120	65
Magnesium (Filtered)	$\mu \mathrm{g} / \mathrm{L}$	20		4550	4780	4780	4350	4850
Mercury	$\mu \mathrm{g} / \mathrm{L}$			<0.02	<0.02	<0.02	-	-
Mercury (Filtered)	$\mu \mathrm{g} / \mathrm{L}$	0.02	0.2	-	-	-	<0.02	<0.02
Phosphorus total (P2O5)	$\mu \mathrm{g} / \mathrm{L}$		30	160	150	60	-	-
Phosphorus (Filtered)	$\mu \mathrm{g} / \mathrm{L}$	100		-	-	-	200	<100
Potassium (Filtered)	$\mu \mathrm{g} / \mathrm{L}$	100		2200	2300	2300	2000	2400
Sodium (Filtered)	$\mu \mathrm{g} / \mathrm{L}$	200		3800	4000	3900	3400	3900
Zinc (Filtered)	$\mu \mathrm{g} / \mathrm{L}$	5	20	<5	<5	<5	5	<5
Inorganics								
Alkalinity (as CaCO3)	mg/L	5		203	215	204	194	195
Hardness (as CaCO3) (Filtered)	mg/L	1		180	199	205	189	213
Solids - Total Dissolved (TDS)	mg/L	3		209	207	212	205	206
Solids - Total Suspended (TSS)	mg/L	3		-	-	-	-	-
Oxygen Demand - Chemical (COD)	mg/L	5		28	19	166	105	338
Organic Carbon - Dissolved (DOC) (Filtered)	mg/L	0.2		6.8	8.2	9	7.1	6.4
Oxygen Demand - Biological (BOD)	mg/L	3		-	-	-	-	-
Phenols (4AAP)	mg/L	0.002	0.001	<0.001	0.003	<0.002	<0.002	<0.002
Sulphate (Filtered)	mg/L	1		<1	<1	<1	<1	<1
Ammonia	mg/L	0.01		2.55	2.73	2.79	2.68	3.14
Nitrate (as N)	mg/L	0.05		0.05	<0.05	<0.05	<0.05	<0.05
Nitrite (as N)	mg/L	0.05		<0.05	<0.05	<0.05	<0.05	<0.05
Total Kjeldahl Nitrogen (TKN)	mg/L	0.1		3	3.2	6.8	7.9	3.1
Conductivity (lab)	$\mu \mathrm{S} / \mathrm{cm}$	1		406	402	411	398	400
pH (Lab)	-		6.5-8.5	8.04	7.82	7.54	7.67	7.67
Field								
DO (Field)	mg/L		5-50	4.59	0.72	2.91	6.96	3.65
Redox Potential (Field)	mV			98	157	161	75	214
Temp (Field)	${ }^{\circ} \mathrm{C}$			9.7	13.4	4	4.2	7.9
Conductivity (field)	$\mu \mathrm{S} / \mathrm{cm}$			370	440	480	390	298
pH (Field)	-		6.5-8.5	7.23	7.04	7.3	7.22	7.18

2020 Annual Report, Galway Waste Disposal Site Lot 19, Concession 13, Galway Road, Trent Lakes The Corporation of the Municipality of Trent Lakes Cambium Reference: 10520-007

Table 3-Groundwater Quality

	Unit	RDL	PWQO	$\begin{array}{\|l\|} \hline \text { DP4 } \\ \hline 2011-05-01 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { DP4 } \\ \hline \text { 2012-05-01 } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { DP4 } \\ \hline 2012-11-01 \end{array}$	$\begin{array}{\|l\|} \hline \text { DP4 } \\ \hline 2013-05-27 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { DP4 } \\ \hline 2013-11-13 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { DP4 } \\ \hline 2014-06-01 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { DP4 } \\ \hline 2014-11-01 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { DP4 } \\ \hline 2015-10-30 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { DP4 } \\ \hline 2016-04-27 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { DP4 } \\ \hline 2016-10-25 \end{array}$	$\begin{array}{\|l\|} \hline \text { DP4 } \\ \hline 2017-06-06 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { DP4 } \\ \hline 2017-10-02 \\ \hline \end{array}$	
Metals																
Arsenic (Filtered)	$\mu \mathrm{g} / \mathrm{L}$	0.1	5	-	<3	<3	<3	<3	<3	<3	<3	<3	<3	<0.7	0.4	
Barium (Filtered)	$\mu \mathrm{g} / \mathrm{L}$	1		55	59	56	56	56	57	56	41	59	68	61	59	
Boron (Filtered)	$\mu \mathrm{g} / \mathrm{L}$	5	200	10	<10	17	<10	<10	12	10	<10	10	14	12	15	
Calcium (Filtered)	$\mu \mathrm{g} / \mathrm{L}$	20		77,000	76,800	83,800	83,600	76,300	79,700	83,400	82,300	80,100	86,400	83,700	76,000	
Cadmium (Filtered)	$\mu \mathrm{g} / \mathrm{L}$	0.015	0.1\|0.5	<0.1	<2	<2	<2	<1	<1	<1	<1	<1	<1	-	<0.014	
Chloride	$\mu \mathrm{g} / \mathrm{L}$	500		19,000	18,300	23,700	19,100	18,400	17,900	19,700	20,800	23,400	17,800	15,000	14,400	
Chromium (III+VI) (Filtered)	$\mu \mathrm{g} / \mathrm{L}$	1	8.9	<5	<3	<3	<3	<3	<3	<3	<3	<3	<3	<1.1	5	
Copper (Filtered)	$\mu \mathrm{g} / \mathrm{L}$	0.1	1\|5	<1	<3	<3	<3	<2	<2	<2	<2	<2	<3	<0.3	0.3	
Iron (Filtered)	$\mu \mathrm{g} / \mathrm{L}$	5	300	100	110	41	18	<10	<10	<10	<10	<10	137	<5	36	
Lead (Filtered)	$\mu \mathrm{g} / \mathrm{L}$	0.02	1\|3	5	<0.5	<2	<2	<2	<2	<2	<2	<2	<2	<2	<0.05	0.03
Manganese (Filtered)	$\mu \mathrm{g} / \mathrm{L}$	1		38	45	33	31	2	17	18	16	27	40	25	20	
Magnesium (Filtered)	$\mu \mathrm{g} / \mathrm{L}$	20		6000	6070	5910	6180	5840	6240	6330	5940	5980	5860	6620	6100	
Mercury	$\mu \mathrm{g} / \mathrm{L}$			-	-	-	-	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.02	<0.02	
Mercury (Filtered)	$\mu \mathrm{g} / \mathrm{L}$	0.02	0.2	-	-	-	-	-	-	-	-	-	-	-	-	
Phosphorus total (P2O5)	$\mu \mathrm{g} / \mathrm{L}$		30	-	<50	<50	<50	50	<50	<50	<50	<50	<50	40	40	
Phosphorus (Filtered)	$\mu \mathrm{g} / \mathrm{L}$	100		-	-	-	-	-	-	-	-	-	-	-	-	
Potassium (Filtered)	$\mu \mathrm{g} / \mathrm{L}$	100		-	3970	3330	4250	4240	3940	4220	3820	4200	3530	3900	3300	
Sodium (Filtered)	$\mu \mathrm{g} / \mathrm{L}$	200		-	5340	8810	6180	5630	5400	5770	6510	5890	9620	7100	8500	
Zinc (Filtered)	$\mu \mathrm{g} / \mathrm{L}$	5	20	<5	<5	<5	<5	<5	<5	<5	<5	5	<5	<5	<5	
Inorganics																
Alkalinity (as CaCO3)	mg/L	5		198	214	171	210	201	206	213	219	222	222	216	191	
Hardness (as CaCO3) (Filtered)	mg/L	1		220	217	234	234	215	225	234	230	225	240	237	215	
Solids - Total Dissolved (TDS)	mg/L	3		-	268	234	250	258	272	260	270	250	272	271	254	
Solids - Total Suspended (TSS)	mg/L	3		-	-	-	-	-	21	<10	<10	<10	18	-	-	
Oxygen Demand - Chemical (COD)	mg/L	5		-	7	45	36	14	37	18	12	5	12	26	25	
Organic Carbon - Dissolved (DOC) (Filtered)	mg/L	0.2		3.5	4.5	9.2	4	6.1	4.3	4.7	4.2	4.3	7.1	4.8	8.1	
Oxygen Demand - Biological (BOD)	mg/L	3		-	-	-	-	-	<5	<5	<5	<5	<5	-	-	
Phenols (4AAP)	mg/L	0.002	0.001	-	0.004	0.004	0.009	0.012	<0.001	0.002	<0.001	0.001	<0.001	0.004	<0.001	
Sulphate (Filtered)	mg/L	1		9	7.42	50.1	9.12	14.2	6.62	3.09	7.24	7.18	16.6	6	16	
Ammonia	mg/L	0.01		0.58	0.66	0.43	0.72	0.58	0.63	0.65	3.14	0.58	0.42	0.66	0.45	
Nitrate (as N)	mg/L	0.05		<0.1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.1	<0.05	<0.25	<0.05	<0.05	
Nitrite (as N)	mg/L	0.05		-	-	-	-	-	<0.05	<0.05	<0.1	<0.05	<0.25	<0.05	<0.05	
Total Kjeldahl Nitrogen (TKN)	mg/L	0.1		1.6	1.13	1.99	1.35	1.54	1.05	0.76	1.21	0.83	1.01	1	0.8	
Conductivity (lab)	$\mu \mathrm{S} / \mathrm{cm}$	1		462	443	471	483	459	466	464	490	456	523	493	462	
pH (Lab)	-		6.5-8.5	7.85	8.01	7.84	7.73	7.79	7.83	7.92	7.91	8.13	8.01	7.77	7.82	
Field																
DO (Field)	mg/L		5-50	-	-	-	-	-	-	-	-	7	6.7	5.26	5.82	
Redox Potential (Field)	mV			-	-	-	-	-	-	-	-	-	-	76	124	
Temp (Field)	${ }^{\circ} \mathrm{C}$			-	-	-	-	-	-	-	-	8.2	7.8	7.9	9.1	
Conductivity (field)	$\mu \mathrm{S} / \mathrm{cm}$			-	-	-	-	-	-	-	-	505	639	610	460	
pH (Field)	-		6.5-8.5	-	-	-	-	-	-	-	-	7.9	7.7	7.17	7.33	

2020 Annual Report, Galway Waste Disposal Site Lot 19, Concession 13, Galway Road, Trent Lakes The Corporation of the Municipality of Trent Lakes Cambium Reference: 10520-007

Table 3-Groundwater Quality

	Unit	RDL	PWQO	DP4	DP4	DP4	DP4	DP4	DP4
				2018-05-29	2018-11-12	2019-04-16	2019-11-14	2020-04-21	2020-11-12
Metals									
Arsenic (Filtered)	$\mu \mathrm{g} / \mathrm{L}$	0.1	5	0.1	0.1	0.1	0.2	0.1	0.3
Barium (Filtered)	$\mu \mathrm{g} / \mathrm{L}$	1		58	60	51	62	60	64
Boron (Filtered)	$\mu \mathrm{g} / \mathrm{L}$	5	200	16	12	10	13	16	14
Calcium (Filtered)	$\mu \mathrm{g} / \mathrm{L}$	20		77,400	80,500	81,400	84,600	84,400	85,200
Cadmium (Filtered)	$\mu \mathrm{g} / \mathrm{L}$	0.015	0.1\|0.5	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015
Chloride	$\mu \mathrm{g} / \mathrm{L}$	500		21,100	19,600	18,700	21,200	19,700	18,600
Chromium (III+VI) (Filtered)	$\mu \mathrm{g} / \mathrm{L}$	1	8.9	<1	<1	<1	<1	<1	<1
Copper (Filtered)	$\mu \mathrm{g} / \mathrm{L}$	0.1	1/5	0.2	<0.1	<0.1	0.1	0.1	0.6
Iron (Filtered)	$\mu \mathrm{g} / \mathrm{L}$	5	300	38	92	76	50	55	118
Lead (Filtered)	$\mu \mathrm{g} / \mathrm{L}$	0.02	1/3\|5	<0.02	<0.02	<0.02	<0.02	<0.02	0.04
Manganese (Filtered)	$\mu \mathrm{g} / \mathrm{L}$	1		19	21	20	18	18	24
Magnesium (Filtered)	$\mu \mathrm{g} / \mathrm{L}$	20		6320	6320	6320	6080	6990	6230
Mercury	$\mu \mathrm{g} / \mathrm{L}$			<0.02	<0.02	<0.02	<0.02	-	-
Mercury (Filtered)	$\mu \mathrm{g} / \mathrm{L}$	0.02	0.2	-	-	-	-	<0.02	<0.02
Phosphorus total (P2O5)	$\mu \mathrm{g} / \mathrm{L}$		30	30	120	30	<100	-	-
Phosphorus (Filtered)	$\mu \mathrm{g} / \mathrm{L}$	100		-	-	-	-	<100	<100
Potassium (Filtered)	$\mu \mathrm{g} / \mathrm{L}$	100		4000	4000	3900	3500	4000	3800
Sodium (Filtered)	$\mu \mathrm{g} / \mathrm{L}$	200		6500	7100	7100	8800	7300	8500
Zinc (Filtered)	$\mu \mathrm{g} / \mathrm{L}$	5	20	<5	<5	<5	<5	<5	<5
Inorganics									
Alkalinity (as CaCO3)	mg/L	5		204	210	203	166	203	188
Hardness (as CaCO3) (Filtered)	mg/L	1		219	227	229	236	240	239
Solids - Total Dissolved (TDS)	mg/L	3		246	245	245	237	245	237
Solids - Total Suspended (TSS)	mg/L	3		-	-	-	-	-	-
Oxygen Demand - Chemical (COD)	mg/L	5		48	141	56	90	52	82
Organic Carbon - Dissolved (DOC) (Filtered)	mg/L	0.2		4.7	6.4	5.6	7.5	5.2	5.1
Oxygen Demand - Biological (BOD)	mg/L	3		-	-	-	-	-	-
Phenols (4AAP)	mg/L	0.002	0.001	<0.001	0.003	<0.002	<0.002	<0.002	<0.002
Sulphate (Filtered)	mg/L	1		7	8	6	36	8	11
Ammonia	mg/L	0.01		0.58	0.64	0.65	0.57	0.63	0.61
Nitrate (as N)	mg/L	0.05		<0.05	0.05	<0.05	<0.05	0.07	<0.05
Nitrite (as N)	mg/L	0.05		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Total Kjeldahl Nitrogen (TKN)	mg/L	0.1		1.1	3.3	1.6	0.9	1.4	1
Conductivity (lab)	$\mu \mathrm{S} / \mathrm{cm}$	1		476	473	474	459	474	458
pH (Lab)	-		6.5-8.5	7.94	7.65	7.6	7.77	7.74	7.61
Field									
DO (Field)	mg/L		5-50	4.52	2.83	3.78	3.49	11.66	5.33
Redox Potential (Field)	mV			99	129	149	62	56	167
Temp (Field)	${ }^{\circ} \mathrm{C}$			7.4	6.7	4	6.4	3.7	8.4
Conductivity (field)	$\mu \mathrm{S} / \mathrm{cm}$			440	530	520	560	530	338
pH (Field)			6.5-8.5	7.26	7.01	7.26	8.11	7.74	7.12

2020 Annual Report, Galway Waste Disposal Site Lot 19, Concession 13, Galway Road, Trent Lakes The Corporation of the Municipality of Trent Lakes Cambium Reference: 10520-007

CAMBIUM

Table 3-Groundwater Quality

	Unit	RDL	PWQO	$\begin{array}{\|l\|} \hline \text { DP5R } \\ \hline 2017-06-06 \end{array}$	$\begin{array}{\|l\|} \hline \text { DP5R } \\ \hline 2017-10-02 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { DP5R } \\ \hline 2018-05-29 \end{array}$	$\begin{array}{\|l\|} \hline \text { DP5R } \\ \hline 2018-11-12 \end{array}$	$\begin{array}{\|l\|} \hline \text { DP7 } \\ \hline 2017-06-06 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { DP7 } \\ \hline 2017-10-02 \end{array}$	$\begin{array}{\|l\|} \hline \text { DP7 } \\ \hline 2018-05-29 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { DP7 } \\ \hline 2018-11-12 \end{array}$	$\begin{array}{\|l\|} \hline \text { DP7 } \\ \hline 2019-04-16 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { DP7 } \\ \hline 2019-11-14 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { DP7 } \\ \hline 2020-04-21 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { DP7 } \\ \hline 2020-11-12 \end{array}$
Metals															
Arsenic (Filtered)	$\mu \mathrm{g} / \mathrm{L}$	0.1	5	<0.7	0.4	0.6	0.6	9.02	4.3	1.3	0.9	0.4	0.8	0.6	1
Barium (Filtered)	$\mu \mathrm{g} / \mathrm{L}$	1		61	74	68	73	131	132	123	124	102	126	117	124
Boron (Filtered)	$\mu \mathrm{g} / \mathrm{L}$	5	200	<5	5	9	<5	8	10	14	5	9	5	10	<5
Calcium (Filtered)	$\mu \mathrm{g} / \mathrm{L}$	20		81,000	87,100	88,100	90,700	69,700	70,100	68,100	70,200	68,900	76,200	70,700	70,800
Cadmium (Filtered)	$\mu \mathrm{g} / \mathrm{L}$	0.015	0.110.5	-	0.023	<0.015	<0.015	-	0.018	<0.015	<0.015	<0.015	<0.015	0.016	<0.015
Chloride	$\mu \mathrm{g} / \mathrm{L}$	500		15,900	17,000	19,800	19,400	12,600	17,800	23,500	23,500	18,200	21,600	21,300	20,800
Chromium (III+VI) (Filtered)	$\mu \mathrm{g} / \mathrm{L}$	1	8.9	<1.1	<1	<1	<1	1.3	<1	19	<1	1	<1	1	1
Copper (Filtered)	$\mu \mathrm{g} / \mathrm{L}$	0.1	1\|5	0.8	0.1	0.1	0.1	0.6	2.2	0.1	0.1	0.1	0.3	0.9	0.9
Iron (Filtered)	$\mu \mathrm{g} / \mathrm{L}$	5	300	59	168	159	210	2470	2650	2220	2060	1900	2030	2260	403
Lead (Filtered)	$\mu \mathrm{g} / \mathrm{L}$	0.02	1/3\|5	14.9	11.2	7.16	5.56	0.83	2.22	0.67	0.19	0.1	0.17	0.97	0.13
Manganese (Filtered)	$\mu \mathrm{g} / \mathrm{L}$	1		64	71	100	109	123	119	115	116	108	114	116	101
Magnesium (Filtered)	$\mu \mathrm{g} / \mathrm{L}$	20		6640	6820	6440	5960	4970	5310	4920	4890	4580	4950	4920	4820
Mercury	$\mu \mathrm{g} / \mathrm{L}$			<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	-	-
Mercury (Filtered)	$\mu \mathrm{g} / \mathrm{L}$	0.02	0.2	-	-	-	-	-	-	-	-	-	-	<0.02	<0.02
Phosphorus total (P2O5)	$\mu \mathrm{g} / \mathrm{L}$		30	70	70	150	80	1250	840	730	620	70	100	-	-
Phosphorus (Filtered)	$\mu \mathrm{g} / \mathrm{L}$	100		-	-	-	-	-	-	-	-	-	-	100	<100
Potassium (Filtered)	$\mu \mathrm{g} / \mathrm{L}$	100		2700	2600	2500	2300	1800	1900	1800	1800	1700	1800	1800	2000
Sodium (Filtered)	$\mu \mathrm{g} / \mathrm{L}$	200		14,400	11,800	14,500	12,800	9300	9500	10,900	12,000	10,700	10,800	11,200	11,200
Zinc (Filtered)	$\mu \mathrm{g} / \mathrm{L}$	5	20	5810	7980	15,700	31,700	<5	9	<5	<5	<5	<5	<5	<5
Inorganics															
Alkalinity (as CaCO3)	mg/L	5		214	254	269	286	186	184	179	187	173	184	174	173
Hardness (as CaCO3) (Filtered)	mg/L	1		230	246	247	251	195	197	190	196	191	211	197	197
Solids - Total Dissolved (TDS)	mg / L	3		271	298	296	301	229	234	216	219	211	222	216	220
Solids - Total Suspended (TSS)	mg / L	3		-	-	-	-	-	-	-	-	-	-	-	-
Oxygen Demand - Chemical (COD)	mg / L	5		292	152	225	97	443	372	166	164	60	74	49	179
Organic Carbon - Dissolved (DOC) (Filtered)	mg/L	0.2		19.6	14	6.5	9	12.9	13.9	10.9	13.3	11.8	12.2	12.5	10
Oxygen Demand - Biological (BOD)	mg/L	3		-	-	-	-	-	-	-	-	-	-	-	-
Phenols (4AAP)	mg/L	0.002	0.001	0.006	<0.001	<0.001	<0.002	0.005	<0.001	<0.001	<0.002	<0.002	<0.002	<0.002	<0.002
Sulphate (Filtered)	mg/L	1		<1	<1	<1	<1	2	<1	<1	<1	<1	<1	<1	<1
Ammonia	mg/L	0.01		1.43	1.37	1.3	1.3	1.2	1.19	1.15	1.24	1.14	1.41	1.16	1.36
Nitrate (as N)	mg/L	0.05		<0.05	<0.05	0.1	0.08	<0.05	<0.05	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Nitrite (as N)	mg/L	0.05		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Total Kjeldahl Nitrogen (TKN)	mg/L	0.1		2.2	2.5	5.4	2.7	4.5	3.7	1.9	2.7	2.4	1.6	1.8	1.8
Conductivity (lab)	$\mu \mathrm{S} / \mathrm{cm}$	1		493	542	571	580	416	426	419	424	409	431	419	427
pH (Lab)	-		6.5-8.5	8.04	7.88	7.97	7.74	7.31	7.28	7.61	7.25	7.14	7.37	7.31	7.24
Field															
DO (Field)	mg/L		5-50	11.04	9.84	6.59	7.88	1.14	1.62	1.15	1.87	1.93	3.17	2.72	4.03
Redox Potential (Field)	mV			66	134	90	138	43	143	55	135	162	78	56	259
Temp (Field)	${ }^{\circ} \mathrm{C}$			11.1	8.6	9	6	9.3	8.9	10.2	8.4	7	7.7	7.2	8.8
Conductivity (field)	$\mu \mathrm{S} / \mathrm{cm}$			450	570	490	660	430	480	370	470	480	490	490	324
pH (Field)	-		6.5-8.5	7.79	7.4	7.57	6.89	6.54	6.86	6.39	6.82	6.92	7.85	7.16	6.69

Table 4-Groundwater Quality - VOC

	Unit	RDL	ODWQS	Locati	DP2	DP2	DP2	DP2	DP3	DP3	DP4	DP4
				Date	2016-04-27	2016-10-25	2017-06-06	2018-05-29	2016-04-27	2016-10-25	2016-04-27	2016-10-25
BTEX												
Benzene	$\mu \mathrm{g} / \mathrm{L}$		1		<0.2	<0.2	<0.5	<0.5	<0.2	<0.2	<0.2	<0.2
Toluene	$\mu \mathrm{g} / \mathrm{L}$		60		<0.2	<0.2	<0.5	<0.5	<0.2	<0.2	<0.2	<0.2
VOCs												
Dichlorobenzene, 1,4-	$\mu \mathrm{g} / \mathrm{L}$		5		<0.1	<0.1	<0.2	<0.2	<0.1	<0.1	<0.1	<0.1
Methylene chloride	$\mu \mathrm{g} / \mathrm{L}$		50		<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Vinyl chloride	$\mu \mathrm{g} / \mathrm{L}$		1		<0.17	<0.17	<0.2	<0.2	<0.17	<0.17	<0.17	<0.17

Table 5 - Surface Water Quality

	Unit	RDL	PWQO	$\begin{array}{\|l\|} \hline \text { SW1 } \\ \hline 2011-04-26 \\ \hline \end{array}$	SW1 2011-10-05	$\begin{array}{\|l\|} \hline \text { SW1 } \\ \hline 2012-04-23 \\ \hline \end{array}$	$\begin{aligned} & \text { SW1 } \\ & \hline 2012-07-12 \end{aligned}$	$\begin{aligned} & \hline \text { SW1 } \\ & \hline 2012-11-05 \end{aligned}$	$\begin{array}{\|l\|} \hline \text { SW1 } \\ \hline 2013-05-13 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { SW1 } \\ \hline 2013-08-22 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { SW1 } \\ \hline 2013-10-02 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { SW1 } \\ \hline 2014-05-13 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { SW1 } \\ \hline 2014-10-14 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { SW1 } \\ \hline 2015-05-19 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { SW1 } \\ \hline 2015-11-02 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { SW1 } \\ \hline 2016-05-11 \\ \hline \end{array}$	
Metals																	
Arsenic	\| $\mu \mathrm{g} / \mathrm{L}$	0.1	5	<1	<1	<1	<1	<1	<3	<3	<3	<3	<3	<3	<3	<1	
Barium	$\mu \mathrm{g} / \mathrm{L}$	1		27	210	36	18	120	112	19	165	118	193	152	86	158	
Boron	$\mu \mathrm{g} / \mathrm{L}$	5	200	<10	360	11	<10	550	103	<10	295	146	206	92	148	56	
Cadmium	$\mu \mathrm{g} / \mathrm{L}$	0.015	0.110.5	<0.1	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
Chloride	$\mu \mathrm{g} / \mathrm{L}$	500		9000	120,000	18,000	2000	180,000	99,200	2960	164,000	95,600	170,000	121,000	111,000	139,000	
Chromium (III+VI)	$\mu \mathrm{g} / \mathrm{L}$	1	8.9	<5	<5	<5	<5	<5	<3	<3	<3	<3	5	3	<3	1	
Copper	$\mu \mathrm{g} / \mathrm{L}$	0.1	1\|5	<1	2	<1	<1	2.8	<2	<2	<2	<2	<2	<2	<2	0.7	
Iron	$\mu \mathrm{g} / \mathrm{L}$	5	300	200	1100	380	290	220	2010	310	1010	1640	1290	2530	270	5080	
Lead	$\mu \mathrm{g} / \mathrm{L}$	0.02	1\|3	5	<0.5	<0.5	<0.5	<0.5	<0.5	<1	<1	<1	<2	<2	<2	<2	0.2
Mercury	$\mu \mathrm{g} / \mathrm{L}$			-	-	-	-	-	-	-	-	-	-	-	-	<0.1	
Mercury (Filtered)	$\mu \mathrm{g} / \mathrm{L}$	0.02	0.2	-	-	-	-	-	-	-	-	-	-	-	-	-	
Phosphorus total (P2O5)	$\mu \mathrm{g} / \mathrm{L}$	10	30	-	-	9	20	19	<20	30	40	30	40	30	<20	<10	
Zinc	$\mu \mathrm{g} / \mathrm{L}$	5	20	<5	13	<5	<5	<5	<5	<5	<5	<5	<5	<5	10	<5	
Inorganics																	
Alkalinity (as CaCO3)	mg/L	5		48	229	80	28	-	205	37	151	313	278	328	106	259	
Hardness (as CaCO3)	mg/L	1		56	480	90	31	440	283	29.9	341	340	482	370	282	298	
Solids - Total Dissolved (TDS)	mg/L	3		88	854	128	44	808	468	58	720	518	852	608	272	-	
Solids - Total Suspended (TSS)	mg/L	3		<10	15	<10	<10	<10	<10	<10	23	11	<10	23	<10	35	
Oxygen Demand - Chemical (COD)	mg/L	5		17	17	15	19	56	27	17	53	41	47	41	30	60	
Oxygen Demand - Biological (BOD)	mg/L	3		<2	<2	<2	<2	<2	<5	<5	5	<5	<5	5	<5	2	
Phenols (4AAP)	mg/L	0.002	0.001	-	-	-	-	-	<0.001	0.001	0.002	<0.001	<0.001	<0.001	<0.001	0.001	
Sulphate (Filtered)	mg/L	1		3	200	7	5	180	20.4	4.38	122	5	65.8	<0.5	120	4	
Ammonia, Unionized (as N)	mg/L		0.02	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.006	
Ammonia	mg/L	0.01		<0.05	<0.05	0.05	<0.05	<0.05	<0.02	0.03	<0.02	0.12	<0.02	0.22	<0.02	0.39	
Nitrate (as N)	mg/L	0.05		<0.1	<0.1	<0.1	<0.1	<0.1	0.94	0.07	<0.25	<0.25	<0.25	<0.25	<0.25	<0.1	
Nitrite (as N)	mg/L	0.05		<0.01	<0.01	<0.01	<0.01	<0.01	<0.25	<0.05	<0.25	<0.25	<0.25	<0.25	<0.25	<0.05	
Total Kjeldahl Nitrogen (TKN)	mg/L	0.1		0.3	0.8	0.71	0.39	0.96	0.56	0.43	1.09	<0.1	0.68	1.5	0.12	1	
Conductivity (lab)	$\mu \mathrm{S} / \mathrm{cm}$	1		133	1180	230	74	1300	764	76	1060	870	1340	964	785	918	
pH (Lab)	-		6.5-8.5	7.09	7.73	7.73	7.46	6.87	8.08	6.85	7.97	7.88	8.18	7.82	7.21	7.2	
Field																	
DO (Field)	mg/L		$5-$	6.94	0.8	9.28	7.79	2.07	4.01	7.79	2.51	8.44	6.84	1.95	6.68	9.7	
Redox Potential (Field)	mV			-	-	-	-	-	-	-	-	-	-	-	-	-	
Temp (Field)	${ }^{\circ} \mathrm{C}$			7.9	15.9	7	21.4	3.2	5.9	20.2	15.9	13	11.2	16.5	8.9	5	
Conductivity (field)	$\mu \mathrm{S} / \mathrm{cm}$			126	120	262	68	739	535	61	994	804	117	958	435	247	
pH (Field)	-		6.5-8.5	8.8	6.99	7.25	8.3	6.75	6.42	6.82	8.21	7.58	6.86	7.02	7.05	8.1	

2020 Annual Report, Galway Waste Disposal Site Lot 19, Concession 13, Galway Road, Trent Lakes The Corporation of the Municipality of Trent Lakes Cambium Reference: 10520-007

Table 5 - Surface Water Quality

	Unit	RDL	PWQO	SW1	SW1	SW1	SW1	SW1	SW1
				2016-10-28	2017-06-06	2018-05-29	2018-11-12	2020-04-21	2020-11-12
Metals									
Arsenic	$\mu \mathrm{g} / \mathrm{L}$	0.1	5	<5	0.6	1.7	0.6	0.3	0.5
Barium	$\mu \mathrm{g} / \mathrm{L}$	1		124	67	131	57	42	59
Boron	$\mu \mathrm{g} / \mathrm{L}$	5	200	268	23	36	9	13	40
Cadmium	$\mu \mathrm{g} / \mathrm{L}$	0.015	0.1\|0.5	<0.5	<0.014	0.08	<0.015	<0.015	<0.015
Chloride	$\mu \mathrm{g} / \mathrm{L}$	500		209,000	6700	13,100	12,100	11,000	10,900
Chromium (III+VI)	$\mu \mathrm{g} / \mathrm{L}$	1	8.9	<5	<1	5	<1	<1	<1
Copper	$\mu \mathrm{g} / \mathrm{L}$	0.1	1/5	<2.5	0.2	4.4	0.5	0.3	0.3
Iron	$\mu \mathrm{g} / \mathrm{L}$	5	300	825	89	461	131	28	49
Lead	$\mu \mathrm{g} / \mathrm{L}$	0.02	1/3\|5	<0.5	0.15	1.55	0.19	0.04	0.02
Mercury	$\mu \mathrm{g} / \mathrm{L}$			<0.1	<0.02	<0.02	<0.02	-	-
Mercury (Filtered)	$\mu \mathrm{g} / \mathrm{L}$	0.02	0.2	-	-	-	-	<0.02	<0.02
Phosphorus total (P2O5)	$\mu \mathrm{g} / \mathrm{L}$	10	30	60	30	80	20	<10	<10
Zinc	$\mu \mathrm{g} / \mathrm{L}$	5	20	-	61	28	25	5	20
Inorganics									
Alkalinity (as CaCO3)	mg/L	5		204	166	165	150	114	181
Hardness (as CaCO3)	mg/L	1		305	166	167	162	126	194
Solids - Total Dissolved (TDS)	mg/L	3		-	191	184	170	140	211
Solids - Total Suspended (TSS)	mg/L	3		22	18	30	10	<3	8
Oxygen Demand - Chemical (COD)	mg/L	5		78	33	38	34	18	21
Oxygen Demand - Biological (BOD)	mg/L	3		12	<2	<2	4	<3	<3
Phenols (4AAP)	mg/L	0.002	0.001	0.03	0.004	<0.001	0.003	<0.002	<0.002
Sulphate (Filtered)	mg/L	1		77	3	1	7	6	11
Ammonia, Unionized (as N)	mg/L		0.02	-	<0.005	<0.005	<0.005	<0.005	<0.005
Ammonia	mg/L	0.01		0.04	<0.01	0.05	0.03	0.02	0.28
Nitrate (as N)	mg/L	0.05		<0.1	<0.05	<0.05	<0.05	0.12	<0.05
Nitrite (as N)	mg/L	0.05		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Total Kjeldahl Nitrogen (TKN)	mg/L	0.1		1.1	0.5	1	0.4	0.3	0.7
Conductivity (lab)	$\mu \mathrm{S} / \mathrm{cm}$	1		914	347	357	331	273	409
pH (Lab)	-		6.5-8.5	7.2	7.99	8.06	7.8	7.69	7.94
Field									
DO (Field)	mg/L		5-	-	8.54	4.62	12.44	8.8	5.45
Redox Potential (Field)	mV			-	2	73	148	60	196
Temp (Field)	${ }^{\circ} \mathrm{C}$			-	11.9	15.9	0.8	0.8	6.5
Conductivity (field)	$\mu \mathrm{S} / \mathrm{cm}$			-	330	330	370	310	279
pH (Field)	-		6.5-8.5	-	7.93	7.51	7.43	7.78	7.42

Table 5 - Surface Water Quality

2020 Annual Report, Galway Waste Disposal Site Lot 19, Concession 13, Galway Road, Trent Lakes The Corporation of the Municipality of Trent Lakes Cambium Reference: 10520-007

Table 5 - Surface Water Quality

	Unit	RDL	PWQO	SW2	SW2	SW2	SW2	SW2
				2016-05-11	2016-10-28	2017-06-06	2019-04-16	2020-04-21
Metals								
Arsenic	\| g / L	0.1	5	<1	<5	5.7	0.5	0.6
Barium	$\mu \mathrm{g} / \mathrm{L}$	1		31	172	151	42	46
Boron	$\mu \mathrm{g} / \mathrm{L}$	5	200	<10	261	39	7	24
Cadmium	$\mu \mathrm{g} / \mathrm{L}$	0.015	0.1\|0.5	<0.1	<0.5	0.173	0.022	<0.015
Chloride	$\mu \mathrm{g} / \mathrm{L}$	500		16,000	84,000	9500	19,700	19,500
Chromium (III+VI)	$\mu \mathrm{g} / \mathrm{L}$	1	8.9	<1	<5	3	<1	<1
Copper	$\mu \mathrm{g} / \mathrm{L}$	0.1	1\|5	0.7	<2.5	10.9	0.9	0.4
Iron	$\mu \mathrm{g} / \mathrm{L}$	5	300	436	4570	13,100	191	1010
Lead	$\mu \mathrm{g} / \mathrm{L}$	0.02	1/3\|5	<0.1	<0.5	5.12	0.09	0.18
Mercury	$\mu \mathrm{g} / \mathrm{L}$			<0.1	<0.1	<0.02	<0.02	-
Mercury (Filtered)	$\mu \mathrm{g} / \mathrm{L}$	0.02	0.2	-	-	-	-	<0.02
Phosphorus total (P2O5)	$\mu \mathrm{g} / \mathrm{L}$	10	30	<10	100	330	250	60
Zinc	$\mu \mathrm{g} / \mathrm{L}$	5	20	<5	<25	45	24	<5
Inorganics								
Alkalinity (as CaCO3)	mg/L	5		64	181	248	124	158
Hardness (as CaCO3)	mg/L	1		66	283	242	151	170
Solids - Total Dissolved (TDS)	mg/L	3		-	-	278	170	195
Solids - Total Suspended (TSS)	mg/L	3		6	151	150	3	14
Oxygen Demand - Chemical (COD)	mg/L	5		<10	83	89	8	19
Oxygen Demand - Biological (BOD)	mg/L	3		<2	43	6	<3	4
Phenols (4AAP)	mg/L	0.002	0.001	0.013	0.008	0.01	<0.002	<0.002
Sulphate (Filtered)	mg/L	1		5	102	2	4	4
Ammonia, Unionized (as N)	mg/L		0.02	0.0052	<0.005	<0.005	<0.005	<0.005
Ammonia	mg/L	0.01		0.08	0.1	0.25	0.03	0.1
Nitrate (as N)	mg/L	0.05		0.9	<0.1	<0.05	<0.05	0.07
Nitrite (as N)	mg/L	0.05		<0.05	<0.05	<0.05	<0.05	<0.05
Total Kjeldahl Nitrogen (TKN)	mg/L	0.1		0.3	1.2	1.4	0.3	0.6
Conductivity (lab)	$\mu \mathrm{S} / \mathrm{cm}$	1		243	787	506	330	379
pH (Lab)	-		6.5-8.5	7.4	7.4	7.59	7.58	7.62
Field								
DO (Field)	mg/L		5-	8	7.7	6.52	7.06	7.85
Redox Potential (Field)	mV			-	-	64	152	56
Temp (Field)	${ }^{\circ} \mathrm{C}$			3.4	6	12.3	6	4.6
Conductivity (field)	$\mu \mathrm{S} / \mathrm{cm}$			307	1379	570	350	470
pH (Field)	-		6.5-8.5	8.8	8	7.17	7.45	7.51

Table 5 - Surface Water Quality

	Unit	RDL	PWQO	SW3												
				2011-04-26	2011-07-12	2011-10-05	2012-04-23	2012-07-12	2012-10-09	2013-05-13	2013-08-22	2013-10-02	2014-05-13	2014-10-14	2015-05-19	2015-11-02
Metals																
Arsenic	$\mu \mathrm{g} / \mathrm{L}$	0.1	5	<1	<1	<1	<1	<1	<1	<3	<3	<3	<3	<3	<3	<3
Barium	$\mu \mathrm{g} / \mathrm{L}$	1		25	24	24	40	19	17	34	16	21	35	20	80	22
Boron	$\mu \mathrm{g} / \mathrm{L}$	5	200	<10	<10	<10	11	<10	<10	15	<10	10	10	<10	63	<10
Cadmium	$\mu \mathrm{g} / \mathrm{L}$	0.015	0.1\|0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chloride	$\mu \mathrm{g} / \mathrm{L}$	500		8000	7000	9000	18,000	2000	4000	13,500	1760	7950	16,500	7510	40,900	12,200
Chromium (III+VI)	$\mu \mathrm{g} / \mathrm{L}$	1	8.9	<5	<5	<5	<5	<5	<5	<3	<3	<3	<3	<3	<3	<3
Copper	$\mu \mathrm{g} / \mathrm{L}$	0.1	1/5	2	<1	1	<1	<1	<1	<2	<2	<2	<2	<2	<2	<2
Iron	$\mu \mathrm{g} / \mathrm{L}$	5	300	200	400	300	320	280	160	280	130	220	170	260	2110	190
Lead	$\mu \mathrm{g} / \mathrm{L}$	0.02	1/3\|5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<1	<1	<1	<2	<2	<2	<2
Mercury	$\mu \mathrm{g} / \mathrm{L}$			-	-	-	-	-	-	-	-	-	-	-	-	-
Mercury (Filtered)	$\mu \mathrm{g} / \mathrm{L}$	0.02	0.2	-	-	-	-	-	-	-	-	-	-	-	-	-
Phosphorus total (P2O5)	$\mu \mathrm{g} / \mathrm{L}$	10	30	-	-	-	9	10	3	<20	<20	<20	<20	30	<20	<20
Zinc	$\mu \mathrm{g} / \mathrm{L}$	5	20	7	<5	<5	<5	<5	<5	100	<5	<5	<5	<5	<5	<5
Inorganics																
Alkalinity (as CaCO3)	mg/L	5		49	41	47	77	27	30	64	24	38	66	36	157	52
Hardness (as CaCO3)	mg/L	1		55	44	52	87	31	30	74.1	28.1	42.3	75.1	44	166	54.7
Solids - Total Dissolved (TDS)	mg/L	3		80	76	100	142	40	24	106	52	66	114	76	240	86
Solids - Total Suspended (TSS)	mg/L	3		<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Oxygen Demand - Chemical (COD)	mg/L	5		16	22	17	18	12	25	16	21	12	15	13	27	14
Oxygen Demand - Biological (BOD)	mg/L	3		<2	<2	<2	<2	<2	<2	<5	<5	<5	<5	<5	<5	<5
Phenols (4AAP)	mg/L	0.002	0.001	-	-	-	-	-	-	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Sulphate (Filtered)	mg/L	1		4	4	5	6	5	5	4.94	4.17	4.3	4.64	3.66	1.97	6.7
Ammonia, Unionized (as N)	mg/L		0.02	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Ammonia	mg/L	0.01		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.02	<0.02	<0.02	0.02	<0.02	0.03	<0.02
Nitrate (as N)	mg/L	0.05		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.2
Nitrite (as N)	mg/L	0.05		<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Total Kjeldahl Nitrogen (TKN)	mg/L	0.1		0.3	0.4	0.3	0.52	0.53	0.48	0.32	0.44	0.51	<0.1	0.22	0.8	0.33
Conductivity (lab)	$\mu \mathrm{S} / \mathrm{cm}$	1		130	117	130	220	74	78	192	65	119	196	110	423	141
pH (Lab)	-		6.5-8.5	7.37	7.78	7.81	7.62	7.45	6.88	7.83	6.77	7.47	7.84	7.37	7.81	7.18
Field																
DO (Field)	mg/L		5-	8.18	4.16	1.14	9.18	8.38	9.67	8.02	8.47	8.01	9.82	6.97	2.97	8.66
Redox Potential (Field)	mV			-	-	-	-	-	-	-	-	-	-	-	-	-
Temp (Field)	${ }^{\circ} \mathrm{C}$			8.3	23.4	13.5	8.2	20.1	8.29	10	22	16.5	14.3	11.6	17	7.8
Conductivity (field)	$\mu \mathrm{S} / \mathrm{cm}$			122	71	142	232	62	54	132	60	113	214	118	389	102
pH (Field)	-		6.5-8.5	8.51	7.44	7.69	7.32	7.72	7.48	7.11	7.17	8.41	8.19	6.72	7.02	7.53

Table 5 - Surface Water Quality

	Unit	RDL	PWQO	SW3								
				2016-05-11	2016-10-28	2017-06-06	2017-10-02	2018-05-29	2018-11-12	2019-04-16	2020-04-21	2020-11-12
Metals												
Arsenic	$\mu \mathrm{g} / \mathrm{L}$	0.1	5	<1	<5	0.8	1.4	2.4	0.4	0.3	0.4	0.7
Barium	$\mu \mathrm{g} / \mathrm{L}$	1		36	25	61	101	91	53	50	47	65
Boron	$\mu \mathrm{g} / \mathrm{L}$	5	200	<10	<50	5	9	15	<5	5	5	6
Cadmium	$\mu \mathrm{g} / \mathrm{L}$	0.015	0.1\|0.5	<0.1	<0.5	<0.014	<0.014	0.039	<0.015	<0.015	<0.015	<0.015
Chloride	$\mu \mathrm{g} / \mathrm{L}$	500		15,000	10,000	4600	17,400	5700	6700	7700	5600	6300
Chromium (III+VI)	$\mu \mathrm{g} / \mathrm{L}$	1	8.9	<1	<5	7	<1	<1	<1	<1	<1	<1
Copper	$\mu \mathrm{g} / \mathrm{L}$	0.1	1/5	0.5	<2.5	0.2	0.9	3.7	0.3	0.4	0.3	0.4
Iron	$\mu \mathrm{g} / \mathrm{L}$	5	300	352	<200	<5	403	254	14	37	27	42
Lead	$\mu \mathrm{g} / \mathrm{L}$	0.02	1/3\|5	<0.1	<0.5	<0.02	0.07	0.38	<0.02	<0.02	<0.02	0.03
Mercury	$\mu \mathrm{g} / \mathrm{L}$			<0.1	<0.1	0.03	<0.02	<0.02	<0.02	<0.02	-	-
Mercury (Filtered)	$\mu \mathrm{g} / \mathrm{L}$	0.02	0.2	-	-	-	-	-	-	-	<0.02	<0.02
Phosphorus total (P2O5)	$\mu \mathrm{g} / \mathrm{L}$	10	30	<10	<10	20	40	30	<10	250	<10	10
Zinc	$\mu \mathrm{g} / \mathrm{L}$	5	20	<5	<25	<5	5	18	<5	13	<5	11
Inorganics												
Alkalinity (as CaCO3)	mg/L	5		63	47	144	176	144	132	117	105	137
Hardness (as CaCO3)	mg/L	1		66	44	135	184	148	145	134	124	160
Solids - Total Dissolved (TDS)	mg/L	3		-	-	161	237	153	145	139	121	158
Solids - Total Suspended (TSS)	mg/L	3		<2	5	10	12	32	<3	<3	<3	<3
Oxygen Demand - Chemical (COD)	mg/L	5		<10	<10	<5	37	32	21	5	11	23
Oxygen Demand - Biological (BOD)	mg/L	3		<2	2	<2	<2	4	3	<3	<3	<3
Phenols (4AAP)	mg/L	0.002	0.001	<0.001	0.002	0.007	<0.001	<0.001	<0.002	<0.002	<0.002	<0.002
Sulphate (Filtered)	mg/L	1		5	5	<1	11	<1	7	4	6	9
Ammonia, Unionized (as N)	mg/L		0.02	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Ammonia	mg/L	0.01		0.08	0.03	<0.01	0.05	0.05	0.03	0.04	<0.01	0.03
Nitrate (as N)	mg/L	0.05		<0.1	0.2	<0.05	<0.05	0.08	<0.05	0.08	0.11	<0.05
Nitrite (as N)	mg/L	0.05		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Total Kjeldahl Nitrogen (TKN)	mg/L	0.1		0.3	0.3	0.3	0.6	0.7	0.4	0.2	0.2	0.6
Conductivity (lab)	$\mu \mathrm{S} / \mathrm{cm}$	1		188	151	292	430	298	283	272	236	307
pH (Lab)	-		6.5-8.5	7.6	7.5	7.85	7.97	7.87	7.67	7.57	7.61	7.68
Field												
DO (Field)	mg/L		5-	-	5	3.77	5.73	3.15	7.22	8.12	7.56	5.11
Redox Potential (Field)	mV			-	-	28	138	69	127	176	57	252
Temp (Field)	${ }^{\circ} \mathrm{C}$			5.6	6	11.9	7	16.5	3.3	0.7	1.4	7.4
Conductivity (field)	$\mu \mathrm{S} / \mathrm{cm}$			256	1297	300	470	270	320	310	270	225
pH (Field)	-		6.5-8.5	7.9	8	7.12	7.43	7.28	7.27	7.38	7.7	6.92

Table 5 - Surface Water Quality

	Unit	RDL	PWQO	$\begin{array}{\|l\|} \hline \text { SW4 } \\ \hline 2011-04-26 \end{array}$	$\begin{array}{\|l\|} \hline \text { SW4 } \\ \hline 2011-07-12 \end{array}$	$\begin{array}{\|l\|} \hline \text { SW4 } \\ \hline 2011-10-05 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { SW4 } \\ \hline 2012-04-23 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { SW4 } \\ \hline 2012-07-12 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { SW4 } \\ \hline 2012-10-09 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { SW4 } \\ \hline 2013-05-13 \end{array}$	$\begin{array}{\|l\|} \hline \text { SW4 } \\ \hline 2013-08-22 \end{array}$	$\begin{array}{\|l\|} \hline \text { SW4 } \\ \hline 2013-10-02 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { SW4 } \\ \hline 2014-05-13 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { SW4 } \\ \hline 2014-10-14 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { SW4 } \\ \hline 2015-05-19 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { SW4 } \\ \hline 2015-11-02 \\ \hline \end{array}$
Metals																
Arsenic	$\mu \mathrm{g} / \mathrm{L}$	0.1	5	<1	<1	<1	<1	<1	<1	<3	<3	<3	<3	<3	<3	<3
Barium	$\mu \mathrm{g} / \mathrm{L}$	1		28	24	27	41	20	17	34	16	20	34	22	37	22
Boron	$\mu \mathrm{g} / \mathrm{L}$	5	200	<10	<10	20	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Cadmium	$\mu \mathrm{g} / \mathrm{L}$	0.015	0.1\|0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chloride	$\mu \mathrm{g} / \mathrm{L}$	500		9000	7000	8000	18,000	2000	4000	15,000	2360	8120	17,100	7760	25,500	12,700
Chromium (III+VI)	$\mu \mathrm{g} / \mathrm{L}$	1	8.9	<5	<5	<5	<5	<5	<5	<3	<3	<3	<3	<3	<3	<3
Copper	$\mu \mathrm{g} / \mathrm{L}$	0.1	1/5	1	<1	<1	<1	<1	<1	<2	<2	<2	<2	<2	<2	<2
Iron	$\mu \mathrm{g} / \mathrm{L}$	5	300	200	300	400	350	390	170	280	150	240	200	320	540	230
Lead	$\mu \mathrm{g} / \mathrm{L}$	0.02	1/3\|5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<1	<1	<1	<2	<2	<2	<2
Mercury	$\mu \mathrm{g} / \mathrm{L}$			-	-	-	-	-	-	-	-	-	-	-	-	-
Mercury (Filtered)	$\mu \mathrm{g} / \mathrm{L}$	0.02	0.2	-	-	-	-	-	-	-	-	-	-	-	-	-
Phosphorus total (P2O5)	$\mu \mathrm{g} / \mathrm{L}$	10	30	-	-	-	9	24	4	<20	<20	<20	<20	60	<20	<20
Zinc	$\mu \mathrm{g} / \mathrm{L}$	5	20	<5	6	<5	6.4	<5	<5	<5	<5	<5	<5	<5	<5	<5
Inorganics																
Alkalinity (as CaCO3)	mg/L	5		50	41	47	78	27	28	71	26	38	65	38	79	51
Hardness (as CaCO3)	mg/L	1		57	45	52	87	31	30	76.1	28.8	43.1	76.1	44.1	88.5	54.6
Solids - Total Dissolved (TDS)	mg/L	3		90	72	90	136	32	42	104	54	72	124	68	138	82
Solids - Total Suspended (TSS)	mg/L	3		<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Oxygen Demand - Chemical (COD)	mg/L	5		16	23	20	17	17	25	17	23	10	9	15	11	14
Oxygen Demand - Biological (BOD)	mg/L	3		<2	<2	<2	<2	<2	<2	<5	<5	<5	<5	<5	<5	<5
Phenols (4AAP)	mg/L	0.002	0.001	-	-	-	-	-	-	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Sulphate (Filtered)	mg/L	1		4	4	5	7	4	4	5.06	4.29	4.29	4.63	3.74	4.24	6.01
Ammonia, Unionized (as N)	mg/L		0.02	0.006	<0.005	<0.005	<0.005	0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.01
Ammonia	mg/L	0.01		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.02	<0.02	<0.02	0.03	<0.02	<0.02	<0.02
Nitrate (as N)	mg/L	0.05		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.07
Nitrite (as N)	mg/L	0.05		<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Total Kjeldahl Nitrogen (TKN)	mg/L	0.1		0.4	0.4	0.4	0.58	0.49	0.41	0.22	0.33	0.5	<0.1	0.26	0.34	0.32
Conductivity (lab)	$\mu \mathrm{S} / \mathrm{cm}$	1		136	117	128	230	74	78	199	68	121	198	112	243	142
pH (Lab)	-		6.5-8.5	7.29	7.77	7.75	7.92	7.43	6.64	7.85	6.72	7.46	7.83	7.38	7.76	7.23
Field																
DO (Field)	mg/L		5-	3.38	4.91	1.18	4.56	-	9.3	8.89	13.61	7.14	10.88	7.06	8.05	8.88
Redox Potential (Field)	mV			-	-	-	-	-	-	-	-	-	-	-	-	-
Temp (Field)	${ }^{\circ} \mathrm{C}$			8.4	23.2	13	7.4	-	8.19	9.4	21.5	16.2	14.5	11	17.4	7.2
Conductivity (field)	$\mu \mathrm{S} / \mathrm{cm}$			63	112	146	259	-	55	142	56	118	224	136	540	106
pH (Field)	-		6.5-8.5	8.92	7.94	7.87	7.32	-	7.7	7.16	6.88	8.79	8.08	7.19	6.73	9.83

Table 5 - Surface Water Quality

	Unit	RDL	PWQO	SW4	SW5	SW5	SW5	SW5	SW5							
				2016-05-11	2016-10-28	2017-06-06	2018-05-29	2018-11-12	2019-04-16	2020-04-21	2020-11-12	2017-06-06	2018-05-29	2018-11-12	2020-04-21	2020-11-12
Metals																
Arsenic	$\mu \mathrm{g} / \mathrm{L}$	0.1	5	<1	<5	0.7	4.2	0.4	0.3	1.1	0.4	0.8	1.4	0.4	0.3	0.6
Barium	$\mu \mathrm{g} / \mathrm{L}$	1		32	46	74	142	47	50	66	63	35	52	27	26	39
Boron	$\mu \mathrm{g} / \mathrm{L}$	5	200	<10	<50	10	16	<5	<5	6	5	6	14	<5	5	6
Cadmium	$\mu \mathrm{g} / \mathrm{L}$	0.015	0.1\|0.5	<0.1	<0.5	0.08	0.093	<0.015	<0.015	0.053	<0.015	<0.014	0.032	<0.015	<0.015	<0.015
Chloride	$\mu \mathrm{g} / \mathrm{L}$	500		17,000	26,000	5300	7300	8200	10,200	19,400	8300	4200	3400	4900	4100	5000
Chromium (III+VI)	$\mu \mathrm{g} / \mathrm{L}$	1	8.9	<1	<5	1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Copper	$\mu \mathrm{g} / \mathrm{L}$	0.1	1/5	0.5	<2.5	4.5	4.6	0.3	0.3	0.8	0.7	0.1	3.2	0.2	0.3	0.4
Iron	$\mu \mathrm{g} / \mathrm{L}$	5	300	314	875	83	1430	25	55	500	35	48	204	40	38	126
Lead	$\mu \mathrm{g} / \mathrm{L}$	0.02	1/3\|5	<0.1	<0.5	1.17	3.08	<0.02	0.05	1.8	<0.02	0.02	0.24	<0.02	<0.02	0.06
Mercury	$\mu \mathrm{g} / \mathrm{L}$			-	-	<0.02	<0.02	<0.02	<0.02	-	-	<0.02	<0.02	<0.02	-	-
Mercury (Filtered)	$\mu \mathrm{g} / \mathrm{L}$	0.02	0.2	-	-	-	-	-	-	<0.02	<0.02	-	-	-	<0.02	<0.02
Phosphorus total (P2O5)	$\mu \mathrm{g} / \mathrm{L}$	10	30	300	500	20	70	<10	230	60	<10	30	20	<10	<10	20
Zinc	$\mu \mathrm{g} / \mathrm{L}$	5	20	7	<25	44	37	21	13	16	11	8	17	17	5	10
Inorganics																
Alkalinity (as CaCO3)	mg/L	5		64	58	143	139	122	114	97	137	119	115	94	78	106
Hardness (as CaCO3)	mg/L	1		-	-	155	154	128	132	123	162	108	121	107	87	128
Solids - Total Dissolved (TDS)	mg/L	3		-	-	161	143	139	141	116	162	134	124	104	92	123
Solids - Total Suspended (TSS)	mg/L	3		<0.01	0.03	6	50	<3	10	76	4	9	<3	<3	<3	<3
Oxygen Demand - Chemical (COD)	mg/L	5		<10	14	19	39	29	9	50	30	25	40	35	14	30
Oxygen Demand - Biological (BOD)	mg/L	3		<2	3	<2	<2	4	<3	<3	<3	<2	<2	4	<3	<3
Phenols (4AAP)	mg/L	0.002	0.001	7.6	7.2	0.006	<0.001	0.004	<0.002	<0.002	<0.002	0.004	<0.001	0.002	<0.002	<0.002
Sulphate (Filtered)	mg/L	1		5	7	2	<1	7	4	4	10	<1	<1	4	5	6
Ammonia, Unionized (as N)	mg/L		0.02	<0.005	-	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Ammonia	mg/L	0.01		0.06	0.05	<0.01	0.03	0.03	0.02	<0.01	0.03	<0.01	0.03	0.03	<0.01	0.17
Nitrate (as N)	mg/L	0.05		<0.1	<0.1	<0.05	<0.05	<0.05	<0.05	0.06	<0.05	<0.05	<0.05	<0.05	0.07	<0.05
Nitrite (as N)	mg/L	0.05		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Total Kjeldahl Nitrogen (TKN)	mg/L	0.1		-	-	0.3	0.9	0.4	0.3	0.8	0.5	0.4	0.5	0.5	0.2	0.7
Conductivity (lab)	$\mu \mathrm{S} / \mathrm{cm}$	1		196	227	292	279	271	275	228	316	243	243	204	181	240
pH (Lab)	-		6.5-8.5	7.6	7.2	7.86	8.01	7.67	7.61	7.61	7.86	7.89	7.98	7.6	7.58	7.77
Field																
DO (Field)	mg/L		5-	-	-	7.45	5.89	9.04	7.18	9.15	7.67	6.76	7.23	11.85	10.16	5.87
Redox Potential (Field)	mV			-	-	2	73	152	155	51	159	2	72	128	50	207
Temp (Field)	${ }^{\circ} \mathrm{C}$			4.9	-	12	18.6	2	1	1.5	7.2	11.6	16.7	0.6	1.8	6.9
Conductivity (field)	$\mu \mathrm{S} / \mathrm{cm}$			165	-	330	280	320	320	280	240	250	230	240	230	172
pH (Field)	-		6.5-8.5	7.9	-	7.49	7.31	7.26	7.59	7.99	7.37	7.37	7.39	7.4	7.87	7.34

Table 6 - Landfill Gas Monitoring Data

	percent methane by volume							
Date	DP1R	DP2	DP3	DP4	DP5R	DP6	DP7	
Top of Screen Elevation (m)	315.02	313.28	313.88	313.98	315.04	315.562	312.915	
Water Level (m)		315.12	315.06	315.20	315.41	315.13	-	
315.32								
Screen Saturated	yes	yes	yes	yes	yes	N/A	yes	
29-May-18	-	<0.05	<0.05	<0.05	0.06	<0.05	<0.05	
12-Nov-18	-	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
16-Apr-19	-	-	-	<0.05	-	<0.05	<0.05	
16-Apr-19	-	-	-	<0.05	-	<0.05	<0.05	
21-Apr-20	<0.05	-	<0.05	<0.05	-	<0.05	2	
12-Nov-20	<0.05	<0.05	<0.05	<0.05	-	<0.05	<0.05	

Notes:

1. Average water elevation since June 2017.
1.5 m length assumed for DP1R and DP5R due to unavailable information
3.05 m screen length assumed for DP2, DP3 and DP4, due to unavailable information.

DP6 and DP7 have known and recorded screen lengths of 3.05 m .

2020 Annual Report, Galway Waste Disposal Site (Closed) Lot 19, Concession 13, Galway Road, Trent Lakes The Corporation of the Municipality of Trent Lakes Cambium Reference: 10520-007

PROVISIONAL CERTIFICATE OF APPROVAL WASTE DISPOSAL SITE

Under the Environmental Protection Act and the regulations and subject to the limitations thereof, this Provisional Certificate of Approval is issued to:

```
Township of Galway \(f\) Cavendish,
Municipal office.
Kinmount, Ontario.
```

for the use and operation of a Modified Landfill
all in accordance with the following plans and specifications:

1. Application and Supporting Information dated March 19, 1981

Located: Lot 19, Conc. 13, tomaship of Galway, County of Paterbarough.
which includes the use of the site only for the diaposal
of the following categories of waste (NOTE: Use of the site for additional categories of wastes requires a new application and amendments to the Provisional Certificate of Approval) damestic
and subject to the following conditions:

\qquad 1982.

Appendix B

Field and Precipitation Data

LOCATION:

CAMBIUM PROJECT NUMBER: 10520-007 SAMPLED BY: M. Pion and N. Morin

WEATHER (PREVIOUS DAY): \qquad
FIELD SHEET - GROUNDWATER DEVELOPMENT \& SAMPLING

Sample Location	Water Level	B.H. Depth (m)	B.H. Dia. (mm)	Stick - Up (m)	Purge Volumes (L)		Temp (${ }^{\circ}$ C)	$\begin{gathered} \mathrm{pH} \\ \text { (units) } \end{gathered}$	Cond. ($\mu \mathrm{S} / \mathrm{cm}$)	$\begin{gathered} \text { DO } \\ (\mathrm{mg} / \mathrm{L}) \end{gathered}$	$\begin{aligned} & \text { ORP } \\ & (\mathrm{mV}) \end{aligned}$	$\begin{gathered} \text { LFG } \\ \text { (ppm) } \end{gathered}$	Observations				
					Needed	Actual							Clarity	Colour	Odour	Sheen	Other
DP1R	1.02	1.93	38.1	0.55	3	0.75	4.0	6.75	630	3.64	68	<5	Cloudy	Brown	None	None	
DP2	-	5.20	50.8	0.93	-	-	-	-	-	-	-	-	-	-	-	-	Frozen
DP3	1.00	4.60	50.8	0.71	22	$\begin{gathered} \text { Dry } \times 1 \\ 8 \end{gathered}$	4.2	7.22	390	6.96	75	$<$	Cloudy	Brown	None	None	
DP4	1.41	4.49	50.8	1.40	19	$\begin{gathered} \text { Dry } \times 1 \\ 15 \end{gathered}$	3.7	7.74	530	11.66	56	<5	Clear	None	None	None	QAQC, Needs cap
DP5R	-	1.71	38.1	0.76	-	-	-	-	-	-	-	-	-	-	-	-	Damaged
DP6	10.29	10.70	38.1	0.69	-	-	-	-	-	-	-	<5	-	-	-	-	Insufficient Volumes
DP7	1.34	6.20	38.1	0.74	17	17	7.2	7.16	490	2.72	56	20000	Clear	None	Sulphur	None	

LOCATION: \qquad

FIELD SHEET - GROUNDWATER DEVELOPMENT \& SAMPLING

Sample Location	Water Level	B.H. Depth (m)	B. H Dia. (mm)	Stick - Up (m)	Purge Volumes (L)		Temp ($\left.{ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} \mathrm{pH} \\ \text { (units) } \end{gathered}$	Cond. ($\mu \mathrm{S} / \mathrm{cm}$)	$\begin{gathered} \text { DO } \\ (\mathrm{mg} / \mathrm{L}) \end{gathered}$	$\begin{aligned} & \text { ORP } \\ & (\mathrm{mV}) \end{aligned}$	$\begin{gathered} \text { LFG } \\ \text { (ppm) } \end{gathered}$	Observations				
					Needed	Actual							Clarity	Colour	Odour	Sheen	Other
DP1R	1.09	1.85	38.1	0.55	2.5	$\begin{gathered} \text { Dry } \times 1 \\ 1 \end{gathered}$	9.3	6.85	834	4.77	206	<5	Cloudy	Brown	None	None	
DP2	1.27	5.20	50.8	0.93	24	$\begin{gathered} \text { Dry } \times 1 \\ 9 \end{gathered}$	7.7	7.25	326	6.27	178	<5	Cloudy	None	Sulphur	None	Needs cap
DP3	0.90	4.60	50.8	0.71	23	$\begin{gathered} \text { Dry } \times 1 \\ 8 \end{gathered}$	7.9	7.18	298	3.65	214	<5	Opaque	Brown	None	None	
DP4	1.44	4.49	50.8	1.40	19	$\begin{gathered} \text { Dry } \times 1 \\ 7 \end{gathered}$	8.4	7.12	338	5.33	167	<5	Clear	None	Sulphur	None	
DP5R	-	1.71	38.1	0.76	-	-	-	-	-	-	-	-	-	-	-	-	Well Inaccessible
DP6	10.17	10.70	38.1	0.69	1.75	0.25	-	-	-	-	-	<5	-	-	-	-	Insufficient Volumes for Sample Collection
DP7	1.55	6.20	38.1	0.74	16	16	8.8	6.69	324	4.03	259	<5	Opaque	Brown	None	None	QAQC, Shortened well by 0.23 m post sampling

LOCATION: \qquad DATE: April 21, 2020
WEATHER (SAMPLE DAY): $-5^{\circ} \mathrm{C}$ Overcast $8^{\circ} \mathrm{C}$

CAMBIUM PROJECT NUMBER: 10520-007
SAMPLED BY: M. Pion and N. Morin
WEATHER (PREVIOUS DAY): $\quad 8^{\circ} \mathrm{C}$ Sun
FIELD SHEET - SURFACE WATER SAMPLING

Sample Location	Depth (m)	Width (m)	Velocity	Discharge ($\mathrm{m}^{3} / \mathrm{s}$)	Temp (${ }^{\circ} \mathrm{C}$)	$\begin{gathered} \text { pH } \\ \text { (units) } \end{gathered}$	Cond. ($\mu \mathrm{S} / \mathrm{cm}$)	DO	$\begin{aligned} & \text { ORP } \\ & (\mathrm{mV}) \end{aligned}$	Observations				
			(m/s)					(mg/L)		Clarity	Colour	Odour	Sheen	Other
SW1	0.08	Pond	No Obser	How	0.8	7.78	310	8.80	60	Clear	None	None	None	Area partially frozen
SW2	0.13	0.40	Ponded	Observable w	4.6	7.51	470	7.85	56	Clear	None	None	None	
SW3	0.15	Pond	No Obser	How	1.4	7.70	270	7.56	57	Clear	None	None	None	QAQC
SW4	0.15	0.40	Ponded	Observable w	1.5	7.99	280	9.15	51	Cloudy	None	None	None	
SW5	0.12	2.50	<0.10	< 0.030	1.8	7.87	230	10.16	50	Clear	None	None	None	Area flooded
SW6	-	-	-	-	-	-	-	-	-	-	-	-	-	Dry

LOCATION: \qquad DATE: November 12, 2020
WEATHER (SAMPLE DAY):
$-1^{\circ} \mathrm{C} \operatorname{Sun} 8^{\circ} \mathrm{C}$

CAMBIUM PROJECT NUMBER: 10520-007
SAMPLED BY: M. Pion + N. Morin
WEATHER (PREVIOUS DAY): $\quad 22^{\circ} \mathrm{C}$ Sun
FIELD SHEET - SURFACE WATER SAMPLING

Sample Location	Depth (m)	Width (m)	Velocity (m / s)	Discharge ($\mathrm{m}^{3} / \mathrm{s}$)	$\begin{aligned} & \text { Temp } \\ & \left({ }^{\circ} \mathrm{C}\right) \end{aligned}$	$\underset{\text { (units) }}{\mathrm{pH}}$	$\begin{aligned} & \text { Cond. } \\ & (\mu \mathrm{S} / \mathrm{cm}) \end{aligned}$	$\underset{(\mathrm{mg} / \mathrm{L})}{\mathrm{D}}$	$\begin{aligned} & \text { ORP } \\ & \text { (mV) } \end{aligned}$	Observations				
										Clarity	Colour	Odour	Sheen	Other
SW1	0.05	Ponded - No Observable Fow			6.5	7.42	279	5.45	196	Clear	None	None	None	
SW2	-	-	-	-	-	-	-	-	-	-	-	-	-	Dry
SW3	0.12	Ponded - No Observable Fow			7.4	6.92	225	5.11	252	Clear	Yellow	None	None	QAQC
SW4	0.05	Ponded - No Observable Fow			7.2	7.37	240	7.67	159	Clear	None	None	None	
SW5	0.08	Ponded - No Observable Fow			6.9	7.34	172	5.87	207	Clear	None	None	None	
SW6	-	-	-	-	-	-	-	-	-	-	-	-	-	Dry

Government Gouvernement of Canada du Canada

Home

Daily Data Report for April 2020

SPRUCEDALE
 ONTARIO
 Current Station Operator: CCN

Latitude:	45..25-30.000... N		Longitude:		79..29'.15.000.. W		Elevation:		337.10 m	
Climate ID:	6117981		WMO ID:		TC ID:					
Max		Mean	Heat Deg	Cool Deg			Total	Snow on	Dir of Max	$\underline{\text { Spd of Max }}$
Temp	Temp	Temp	Days	Days	Rain	Snow	Precip	Grnd	Gust	Gust
${ }^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{C}$			mm	cm	mm	cm	10's deg	km/h
DAY ${ }^{\sim}$	\sim	\sim	L.1.l	L.1.l	\|ull	L.1.l	\|ull	Lull		L.1.l
$01 \pm$					0.0	0.0	0.0	9		
02 t					0.0	I	0.0	4		
$03 \pm$					6.0	0.0	6.0	0		
$04 \pm$					0.2	0.0	0.2	I		
$05 \pm$					0.0	0.0	0.0	I		
$06 \pm$					0.0	0.0	0.0	I		
$07 \pm$					0.8	0.0	0.8	I		
$08 \pm$					0.0	0.4	0.4	0		
$09 \pm$					0.0	1.0	1.0	4		
$10 \pm$					0.0	0.0	0.0	3		
$11 \pm$					0.0	0.0	0.0	I		
$12 \pm$					6.0	0.0	6.0	I		
$13 \pm$					0.0	1.8	0.0	I		
$14 \pm$					0.0	1.0	0.0	I		
$15 \pm$					0.0	1.8	1.8	I		
$16 \pm$					0.0	I	0.0	I		
$17 \pm$					0.0	0.0	0.0	I		
$18 \pm$					3.4	0.0	3.4	0		
$19 \pm$					1.6	I	1.6	I		
$20 \pm$					0.0	9.2	10.0	I		
$21 \pm$					0.0	2.2	2.0	10		
$22 \pm$					0.0	0.0	0.0	7		
$23 \pm$					0.0	0.8	0.8	I		
$24 \pm$					0.0	0.0	0.0	I		
$25 \pm$					0.0	0.0	0.0	0		
$26 \pm$					0.0	0.0	0.0	I		
$27 \pm$					0.0	0.0	0.0	0		
$28 \pm$					0.8	0.0	0.8	0		
$29 \pm$					19.6	0.0	19.6	0		
$30 \pm$					16.4	0.0	16.4	0		
Sum					54.8	18.2	70.8			
Avg										

	Max	Min	Mean	Heat Deg	Cool Deg.	Total	Total	Total	Snow on	Dir of Max	$\underline{S p d}$ of Max
	Temp	Temp	Temp	Days	Days	Rain	Snow	Precip	Grnd	Gust	Gust
	$\stackrel{\circ}{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{C}$			mm	cm	mm	cm	10's deg	km/h
DAY	\sim	\sim	$\underline{\sim}$	Lull	Lull	L.1.l	\|lll	L.1.l	L.1.l		L.lll

Xtrm
Summary, average and extreme values are based on the data above.

	Legend
- A = Accumulated	- $S=$ More than one occurrence
- $C=$ Precipitation occurred, amount uncertain	- $T=$ Trace
- E Estimated	- $Y=$ Temperature missing but known to be <0
- $F=$ Accumulated and estimated	- [empty] = Indicates an unobserved value
- $L=$ Precipitation may or may not have occurred	- $\wedge=$ The value displayed is based on incomplete data
- $M=$ Missing	- $t=$ Data that is not subject to review by the National Climate Archives
- $N=$ Temperature missing but known to be >0	

Date modified:

2020-09-17

Government Gouvernement
of Canada du Canada

Home
Environment and natural resources $>\underline{\text { Weather, Climate and Hazard }}>\underline{\text { Past weather and climate }}>\underline{\text { Historical Data }}$

Daily Data Report for November 2020

SPRUCEDALE
 ONTARIO
 Current Station Operator: CCN

Latitude:	45..25'30.000... N		Longitude:		79..29.'15.000.. W W		Elevation:		337.10 m	
Climate ID:	6117981		Wмо ID:		TC ID:					
Max	Min	Mean	Heat Deg	Cool Deg	Total	Total	Total	Snow on	Dir of Max	Spd of Max
Temp	Temp	Temp	Days	Days	Rain	Snow	Precip	Grnd	$\underline{\text { Gust }}$	Gust
C	${ }^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{C}$			mm	cm	mm	cm	10's deg	km/h
DAY L	W	W	Lull	Lull		Lull	Lull	Lull		Lull
$01 \pm$					1.4	1.4	2.8	0		
$02 \pm$					1.4	1.4	2.8	0		
$03 \pm$					I	0.0	I	0		
04 !					I	0.0	I	0		
$05 \pm$					I	0.0	I	0		
$06 \pm$					I	0.0	I	0		
$07 \pm$					0.0	0.0	0.0	0		
$08 \pm$					I	0.0	I	0		
$09 \pm$					0.0	0.0	0.0	0		
$10 \pm$					11.6	0.0	11.6	0		
$11 \pm$					0.4	0.0	0.4	0		
$12 \pm$					0.0	0.0	0.0	0		
$13 \pm$					2.4	0.0	2.4	0		
$14 \pm$					3.2	0.0	3.2	0		
$15 \pm$					20.2	0.0	20.2	0		
$16 \pm$					0.0	0.4	0.0	0		
$17 \pm$					I	I	I	I		
$18 \pm$					0.0	I	0.0	I		
$19 \pm$					I	0.0	I	I		
$20 \pm$					I	0.0	I	0		
$21 \pm$					0.0	0.4	0.0	0		
$22 \pm$					0.0	5.8	5.8	I		
$23 \pm$					0.0	1.8	1.0	11		
$24 \pm$					0.0	0.0	0.0	9		
$25 \pm$					0.4	0.0	0.4	7		
$26 \pm$					6.6	0.0	6.6	4		
27 !					0.0	1.0	0.0	I		
$28 \pm$					I	0.0	I	I		
$29 \pm$					1.0	0.0	1.0	0		
$30 \pm$					4.0	9.2	8.0	0		
Sum					52.6	21.4	66.2			
Avg										

Legend

- $\mathrm{A}=$ Accumulated
- $S=$ More than one occurrence
- $C=$ Precipitation occurred, amount uncertain
- T=Trace
- $E=$ Estimated
- $Y=$ Temperature missing but known to be <0
- $\mathrm{F}=$ Accumulated and estimated
- [empty] = Indicates an unobserved value
- L = Precipitation may or may not have occurred
- $\wedge=$ The value displayed is based on incomplete data
- $\mathrm{M}=$ Missing
- $\dagger=$ Data that is not subject to review by the National Climate Archives
- $\mathrm{N}=$ Temperature missing but known to be >0

Date modified:

2020-09-17

2020 Annual Report, Galway Waste Disposal Site (Closed) Lot 19, Concession 13, Galway Road, Trent Lakes The Corporation of the Municipality of Trent Lakes Cambium Reference: 10520-007

Appendix C

Laboratory Certificates of Analysis

CADUCE E. ${ }^{\circ}{ }^{-1}$

ENVIRONMENTAL LABORATORTES

Report To:

Cambium Environmental

PO Box 325, 52 Hunter Street East Peterborough ON K9H 1G5 Canada
Attention: Stephanie Reeder
DATE RECEIVED: 22-Apr-20
DATE REPORTED: 30-Apr-20
SAMPLE MATRIX: Groundwater

Caduceon Environmental Laboratories
285 Dalton Ave
Kingston Ontario K7K 6Z1
Tel: 613-544-2001
Fax: 613-544-2770
JOB/PROJECT NO.: Galway WDS
P.O. NUMBER: 10520-007

WATERWORKS NO.

R.L. $=$ Reporting Limit

Test methods may be modified from specified reference method unless indicated by an *
Michelle Dubien Lab Manager
Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie
The analytical results reported herein refer to the samples as received. Reproduction of this analytical report in full or in part is prohibited without prior consent from Caduceon Environmental Laboratories.

Report To:

Cambium Environmental
PO Box 325, 52 Hunter Street East
Peterborough ON K9H 1G5 Canada
Attention: Stephanie Reeder
DATE RECEIVED: 22-Apr-20
DATE REPORTED: 30-Apr-20
SAMPLE MATRIX: Groundwater

Caduceon Environmental Laboratories
285 Dalton Ave
Kingston Ontario K7K 6Z1
Tel: 613-544-2001
Fax: 613-544-2770
JOB/PROJECT NO.: Galway WDS
P.O. NUMBER: 10520-007

WATERWORKS NO.

			Client I.D.		DP1R	DP3	DP7	DP4
			Sample I.D.		B20-10491-1	B20-10491-2	B20-10491-3	B20-10491-4
			Date Collected		21-Apr-20	21-Apr-20	21-Apr-20	21-Apr-20
Parameter	Units	R.L.	Reference Method	Date/Site Analyzed				
Potassium	mg / L	0.1	SM 3120	24-Apr-20/O	4.3	2.0	1.8	4.0
Sodium	mg/L	0.2	SM 3120	24-Apr-20/O	9.7	3.4	11.2	7.3
Zinc	mg/L	0.005	SM 3120	24-Apr-20/O	41.0	0.005	< 0.005	< 0.005

ENVIRONMENTAL LABORATORIES Client committed. Quality assured.

Final Report
C.O.C.: G93145

Report To:

Cambium Environmental

PO Box 325, 52 Hunter Street East Peterborough ON K9H 1G5 Canada
Attention: Stephanie Reeder
DATE RECEIVED: 22-Apr-20
DATE REPORTED: 30-Apr-20
SAMPLE MATRIX: Groundwater

Caduceon Environmental Laboratories
285 Dalton Ave
Kingston Ontario K7K 6 Z1
Tel: 613-544-2001
Fax: 613-544-2770
JOB/PROJECT NO.: Galway WDS
P.O. NUMBER: 10520-007

WATERWORKS NO.

R.L. $=$ Reporting Limit

Test methods may be modified from specified reference method unless indicated by an *
Michelle Dubien Lab Manager
Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie
The analytical results reported herein refer to the samples as received. Reproduction of this analytical report in full or in part is prohibited without prior consent from Caduceon Environmental Laboratories.

ENVIRONMENTAL LABORATORIES
Client committed. Quality assured.
Final Report
C.O.C.: G93145

REPORT No. B20-10491

Report To:

Cambium Environmental
PO Box 325, 52 Hunter Street East
Peterborough ON K9H 1G5 Canada
Attention: Stephanie Reeder
DATE RECEIVED: 22-Apr-20
DATE REPORTED: 30-Apr-20
SAMPLE MATRIX: Groundwater

Caduceon Environmental Laboratories
285 Dalton Ave
Kingston Ontario K7K 6Z1
Tel: 613-544-2001
Fax: 613-544-2770
JOB/PROJECT NO.: Galway WDS
P.O. NUMBER: 10520-007

WATERWORKS NO.

CADUCE Fi ${ }^{-1}{ }^{\prime}$ CERTIFICATE OF ANALYSIS

ENVIRONMENTAL LABORATORTES Client committed. Quality assured.

Final Report
C.O.C.: G93145

REPORT No. B20-10492

Report To:

Cambium Environmental

PO Box 325, 52 Hunter Street East Peterborough ON K9H 1G5 Canada
Attention: Stephanie Reeder
DATE RECEIVED: 22-Apr-20
DATE REPORTED: 29-Apr-20
SAMPLE MATRIX: Surface Water

Caduceon Environmental Laboratories

285 Dalton Ave
Kingston Ontario K7K 6Z1
Tel: 613-544-2001
Fax: 613-544-2770
JOB/PROJECT NO.: Galway WDS
P.O. NUMBER: 10520-007

WATERWORKS NO.

			Client I.D.		SW1	SW3	SW5	SW QA/QC
			Sample I.D.		B20-10492-1	B20-10492-2	B20-10492-3	B20-10492-4
			Date Collected		21-Apr-20	21-Apr-20	21-Apr-20	21-Apr-20
Parameter	Units	R.L.	Reference Method	Date/Site Analyzed				
Alkalinity(CaCO3) to pH 4.5	mg / L	5	SM 2320B	24-Apr-20/O	114	105	78	104
Conductivity @ $25^{\circ} \mathrm{C}$	$\mu \mathrm{mho} / \mathrm{cm}$	1	SM 2510B	24-Apr-20/O	273	236	181	235
pH @ $25^{\circ} \mathrm{C}$	pH Units		SM 4500H	24-Apr-20/O	7.69	7.61	7.58	7.62
Total Dissolved Solids	mg/L	3	SM 2540D	27-Apr-20/O	140	121	92	120
Total Suspended Solids	mg / L	3	SM2540D	23-Apr-20/K	< 3	< 3	<3	3
BOD(5 day)	mg/L	3	SM 5210B	23-Apr-20/K	< 3	< 3	< 3	< 3
COD	mg/L	5	SM 5220D	24-Apr-20/O	18	11	14	12
Phenolics	mg/L	0.002	MOEE 3179	23-Apr-20/K	< 0.002	<0.002	<0.002	<0.002
Chloride	mg / L	0.5	SM4110C	27-Apr-20/O	11.0	5.6	4.1	5.5
Ammonia (N)-Total	mg/L	0.01	$\begin{gathered} \text { SM4500- } \\ \text { NH3-H } \end{gathered}$	23-Apr-20/K	0.02	< 0.01	< 0.01	< 0.01
Sulphate	mg/L	1	SM4110C	27-Apr-20/O	6	6	5	6
Nitrite (N)	mg/L	0.05	SM4110C	27-Apr-20/O	< 0.05	< 0.05	<0.05	< 0.05
Nitrate (N)	mg/L	0.05	SM4110C	27-Apr-20/O	0.12	0.11	0.07	0.08
Total Kjeldahl Nitrogen	mg/L	0.1	E3199A. 1	24-Apr-20/K	0.3	0.2	0.2	0.2
Mercury	mg/L	0.00002	SM 3112 B	27-Apr-20/O	< 0.00002	< 0.00002	< 0.00002	< 0.00002
Hardness (as CaCO3)	mg/L	1	SM 3120	27-Apr-20/O	126	124	87	115
Arsenic	mg/L	0.0001	EPA 200.8	27-Apr-20/O	0.0003	0.0004	0.0003	0.0004
Barium	mg/L	0.001	SM 3120	27-Apr-20/O	0.042	0.047	0.026	0.044
Boron	mg / L	0.005	SM 3120	27-Apr-20/O	0.013	0.005	0.005	< 0.005
Cadmium	mg / L).000015	EPA 200.8	27-Apr-20/O	<0.000015	<0.000015	<0.000015	< 0.000015
Chromium	mg/L	0.001	EPA 200.8	27-Apr-20/O	< 0.001	< 0.001	< 0.001	< 0.001
Copper	mg/L	0.0001	EPA 200.8	27-Apr-20/O	0.0003	0.0003	0.0003	0.0004
Iron	mg/L	0.005	SM 3120	27-Apr-20/O	0.028	0.027	0.038	0.019
Lead	mg/L	0.00002	EPA 200.8	27-Apr-20/O	0.00004	< 0.00002	< 0.00002	< 0.00002
Phosphorus-Total	mg/L	0.01	E3199A. 1	24-Apr-20/K	< 0.01	< 0.01	< 0.01	< 0.01
Zinc	mg/L	0.005	SM 3120	27-Apr-20/O	0.005	< 0.005	0.005	< 0.005

R.L. $=$ Reporting Limit

Test methods may be modified from specified reference method unless indicated by an *
Michelle Dubien Lab Manager
Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie
The analytical results reported herein refer to the samples as received. Reproduction of this analytical report in full or in part is prohibited without prior consent from Caduceon Environmental Laboratories.

CADUCE F' ${ }^{-7}$ CERTIFICATE OF ANALYSIS

ENVIRONMENTAL LABORATORTES Client committed. Quality assured.

Final Report
C.O.C.: G93145

REPORT No. B20-10492

Report To:

Cambium Environmental

PO Box 325, 52 Hunter Street East Peterborough ON K9H 1G5 Canada
Attention: Stephanie Reeder
DATE RECEIVED: 22-Apr-20
DATE REPORTED: 29-Apr-20
SAMPLE MATRIX: Surface Water

Caduceon Environmental Laboratories
285 Dalton Ave
Kingston Ontario K7K 6Z1
Tel: 613-544-2001
Fax: 613-544-2770
JOB/PROJECT NO.: Galway WDS
P.O. NUMBER: 10520-007

WATERWORKS NO.

R.L. $=$ Reporting Limit

Test methods may be modified from specified reference method unless indicated by an *
Michelle Dubien Lab Manager
Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie
The analytical results reported herein refer to the samples as received. Reproduction of this analytical report in full or in part is prohibited without prior consent from Caduceon Environmental Laboratories.

CADUCE E. ${ }^{\circ}{ }^{-1}$

ENVIRONMENTAL LABORATORTES

Report To:

Cambium Environmental

PO Box 325, 52 Hunter Street East Peterborough ON K9H 1G5 Canada
Attention: Stephanie Reeder
DATE RECEIVED: 13-Nov-20
DATE REPORTED: 27-Nov-20
SAMPLE MATRIX: Groundwater

Caduceon Environmental Laboratories
285 Dalton Ave
Kingston Ontario K7K 6Z1
Tel: 613-544-2001
Fax: 613-544-2770
JOB/PROJECT NO.: Galway WDS
P.O. NUMBER: 10530-007

WATERWORKS NO.

R.L. $=$ Reporting Limit

Test methods may be modified from specified reference method unless indicated by an *
Michelle Dubien
Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie
The analytical results reported herein refer to the samples as received. Reproduction of this analytical report in full or in part is prohibited without prior consent from Caduceon Environmental Laboratories.

Report To:

Cambium Environmental
PO Box 325, 52 Hunter Street East
Peterborough ON K9H 1G5 Canada
Attention: Stephanie Reeder
DATE RECEIVED: 13-Nov-20
DATE REPORTED: 27-Nov-20
SAMPLE MATRIX: Groundwater

Caduceon Environmental Laboratories

285 Dalton Ave
Kingston Ontario K7K 6 Z1
Tel: 613-544-2001
Fax: 613-544-2770
JOB/PROJECT NO.: Galway WDS
P.O. NUMBER: 10530-007

WATERWORKS NO.

			Client I.D.		DP7	GW QA/QC	DP4	DP3
			Sample I.D.		B20-35877-1	B20-35877-2	B20-35877-3	B20-35877-4
			Date Collected		12-Nov-20	12-Nov-20	12-Nov-20	12-Nov-20
Parameter	Units	R.L.	Reference Method	Date/Site Analyzed				
Manganese	mg/L	0.001	SM 3120	17-Nov-20/O	0.101	0.098	0.024	0.065
Sodium	mg/L	0.2	SM 3120	17-Nov-20/O	11.2	11.3	8.5	3.9
Phosphorus	mg/L	0.1	SM 3120	17-Nov-20/O	< 0.1	< 0.1	<0.1	<0.1
Potassium	mg/L	0.1	SM 3120	17-Nov-20/O	2.0	1.9	3.8	2.4
Zinc	mg / L	0.005	SM 3120	17-Nov-20/O	< 0.005	< 0.005	<0.005	<0.005

CADUCE BN' CERTIFICATE OF ANALYSIS

ENVIRONMENTAL LABORATORTES Client committed. Quality assured.

Final Report
C.O.C.: G099365

REPORT No. B20-35877

Report To:

Cambium Environmental

PO Box 325, 52 Hunter Street East Peterborough ON K9H 1G5 Canada
Attention: Stephanie Reeder
DATE RECEIVED: 13-Nov-20
DATE REPORTED: 27-Nov-20
SAMPLE MATRIX: Groundwater

Caduceon Environmental Laboratories
285 Dalton Ave
Kingston Ontario K7K 6Z1
Tel: 613-544-2001
Fax: 613-544-2770
JOB/PROJECT NO.: Galway WDS
P.O. NUMBER: 10530-007

WATERWORKS NO.

			Client I.D.		DP1-R	DP2		
			Sample I.D.		B20-35877-5	B20-35877-6		
			Date Collected		12-Nov-20	12-Nov-20		
Parameter	Units	R.L.	Reference Method	Date/Site Analyzed				
Alkalinity(CaCO3) to pH 4.5	mg / L	5	SM 2320B	17-Nov-20/O	445	223		
Conductivity @ $25^{\circ} \mathrm{C}$	$\mu \mathrm{mho} / \mathrm{cm}$	1	SM 2510B	17-Nov-20/O	870	461		
pH @ $25^{\circ} \mathrm{C}$	pH Units		SM 4500H	17-Nov-20/O	7.54	7.65		
Total Dissolved Solids	mg/L	3	SM 2540D	18-Nov-20/O	460	238		
Total Suspended Solids	mg/L	3	SM2540D	17-Nov-20/K		23		
Dissolved Organic Carbon	mg/L	0.2	EPA 415.2	18-Nov-20/O	13.0	6.3		
BOD(5 day)	mg/L	3	SM 5210B	13-Nov-20/K		< 3		
COD	mg / L	5	SM5220C	16-Nov-20/K	107	26		
Chloride	mg/L	0.5	SM4110C	17-Nov-20/O	6.3	1.8		
Phenolics	mg/L	0.002	MOEE 3179	25-Nov-20/K	< 0.002	< 0.002		
Ammonia (N)-Total	mg/L	0.01	$\begin{gathered} \text { SM4500- } \\ \text { NH3-H } \end{gathered}$	18-Nov-20/K	0.35	3.16		
Sulphate	mg / L	1	SM4110C	17-Nov-20/O	<1	<1		
Nitrite (N)	mg/L	0.05	SM4110C	17-Nov-20/O	<0.05	<0.05		
Nitrate (N)	mg/L	0.05	SM4110C	17-Nov-20/O	0.08	<0.05		
Total Kjeldahl Nitrogen	mg/L	0.1	E3199A. 1	24-Nov-20/K	1.1	3.8		
Mercury	mg/L	0.00002	SM 3112 B	17-Nov-20/O	<0.00002	< 0.00002		
Hardness (as CaCO3)	mg/L	1	SM 3120	17-Nov-20/O	510	246		
Arsenic	mg/L	0.0001	EPA 200.8	20-Nov-20/O	0.0019	< 0.0001		
Barium	mg / L	0.001	SM 3120	17-Nov-20/O	0.178	0.080		
Boron	mg/L	0.005	SM 3120	17-Nov-20/O	0.136	0.008		
Cadmium	mg/L).000015	EPA 200.8	20-Nov-20/O	0.000022	<0.000015		
Calcium	mg/L	0.02	SM 3120	17-Nov-20/O	186	90.6		
Chromium	mg/L	0.001	EPA 200.8	20-Nov-20/O	< 0.001	< 0.001		
Copper	mg / L	0.0001	EPA 200.8	20-Nov-20/O	0.0030	0.0004		
Iron	mg/L	0.005	SM 3120	17-Nov-20/O	44.2	0.335		
Lead	mg / L	0.00002	EPA 200.8	20-Nov-20/O	0.00557	0.00005		
Magnesium	mg / L	0.02	SM 3120	17-Nov-20/O	10.9	4.77		

R.L. $=$ Reporting Limit

Test methods may be modified from specified reference method unless indicated by an *
Michelle Dubien Lab Manager
Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie
The analytical results reported herein refer to the samples as received. Reproduction of this analytical report in full or in part is prohibited without prior consent from Caduceon Environmental Laboratories. Client committed. Quality assured.

Report To:

Cambium Environmental
PO Box 325, 52 Hunter Street East
Peterborough ON K9H 1G5 Canada
Attention: Stephanie Reeder
DATE RECEIVED: 13-Nov-20
DATE REPORTED: 27-Nov-20
SAMPLE MATRIX: Groundwater

Caduceon Environmental Laboratories

285 Dalton Ave
Kingston Ontario K7K 6 Z1
Tel: 613-544-2001
Fax: 613-544-2770
JOB/PROJECT NO.: Galway WDS
P.O. NUMBER: 10530-007

WATERWORKS NO.

			Client I.D.		DP1-R	DP2		
			Sample I.D.		B20-35877-5	B20-35877-6		
			Date Collected		12-Nov-20	12-Nov-20		
Parameter	Units	R.L.	Reference Method	Date/Site Analyzed				
Manganese	mg/L	0.001	SM 3120	17-Nov-20/O	1.71	0.098		
Sodium	mg / L	0.2	SM 3120	17-Nov-20/O	11.6	3.4		
Phosphorus	mg/L	0.1	SM 3120	17-Nov-20/O	< 0.1	< 0.1		
Potassium	mg / L	0.1	SM 3120	17-Nov-20/O	5.3	3.3		
Zinc	mg / L	0.005	SM 3120	17-Nov-20/O	30.4	0.009		

CADUCE E. ${ }^{\circ}{ }^{-1}$

ENVIRONMENTAL LABORATORTES

Report To:

Cambium Environmental

PO Box 325, 52 Hunter Street East Peterborough ON K9H 1G5 Canada
Attention: Stephanie Reeder
DATE RECEIVED: 13-Nov-20
DATE REPORTED: 27-Nov-20
SAMPLE MATRIX: Surface Water

Caduceon Environmental Laboratories
285 Dalton Ave
Kingston Ontario K7K 6Z1
Tel: 613-544-2001
Fax: 613-544-2770
JOB/PROJECT NO.: Galway WDS
P.O. NUMBER: 10530-007

WATERWORKS NO.

			Client I.D.		SW3	SW QA/QC	SW4	SW1
			Sample I.D.		B20-35879-1	B20-35879-2	B20-35879-3	B20-35879-4
			Date Collected		12-Nov-20	12-Nov-20	12-Nov-20	12-Nov-20
Parameter	Units	R.L.	Reference Method	Date/Site Analyzed				
Alkalinity(CaCO3) to pH 4.5	mg / L	5	SM 2320B	17-Nov-20/O	137	138	137	181
Conductivity @ $25^{\circ} \mathrm{C}$	$\mu \mathrm{mho} / \mathrm{cm}$	1	SM 2510B	17-Nov-20/O	307	306	316	409
pH @ $25^{\circ} \mathrm{C}$	pH Units		SM 4500H	17-Nov-20/O	7.68	7.77	7.86	7.94
Total Dissolved Solids	mg/L	3	SM 2540D	18-Nov-20/O	158	157	162	211
Total Suspended Solids	mg / L	3	SM2540D	16-Nov-20/K	<3	<3	4	8
BOD(5 day)	mg / L	3	SM 5210B	13-Nov-20/K	<3	<3	< 3	< 3
COD	mg / L	5	SM5220C	16-Nov-20/K	23	32	30	21
Chloride	mg/L	0.5	SM4110C	17-Nov-20/O	6.3	6.3	8.3	10.9
Phenolics	mg / L	0.002	MOEE 3179	25-Nov-20/K	<0.002	<0.002	<0.002	<0.002
Ammonia (N)-Total	mg/L	0.01	$\begin{gathered} \text { SM4500- } \\ \text { NH3-H } \end{gathered}$	18-Nov-20/K	0.03	0.05	0.03	0.28
Sulphate	mg/L	1	SM4110C	17-Nov-20/O	9	9	10	11
Nitrite (N)	mg / L	0.05	SM4110C	17-Nov-20/O	< 0.05	< 0.05	<0.05	<0.05
Nitrate (N)	mg / L	0.05	SM4110C	17-Nov-20/O	<0.05	<0.05	<0.05	<0.05
Total Kjeldahl Nitrogen	mg / L	0.1	E3199A. 1	24-Nov-20/K	0.6	0.6	0.5	0.7
Mercury	mg / L	0.00002	SM 3112 B	18-Nov-20/O	< 0.00002	< 0.00002	< 0.00002	< 0.00002
Hardness (as CaCO3)	mg / L	1	SM 3120	17-Nov-20/O	160	164	162	194
Arsenic	mg / L	0.0001	EPA 200.8	26-Nov-20/O	0.0007	0.0006	0.0004	0.0005
Barium	mg / L	0.001	SM 3120	17-Nov-20/O	0.065	0.066	0.063	0.059
Boron	mg / L	0.005	SM 3120	17-Nov-20/O	0.006	0.005	0.005	0.040
Cadmium	mg / L). 000015	EPA 200.8	26-Nov-20/O	<0.000015	<0.000015	<0.000015	<0.000015
Chromium	mg / L	0.001	EPA 200.8	26-Nov-20/O	< 0.001	< 0.001	< 0.001	< 0.001
Copper	mg/L	0.0001	EPA 200.8	26-Nov-20/O	0.0004	0.0005	0.0007	0.0003
Iron	mg / L	0.005	SM 3120	17-Nov-20/O	0.042	0.053	0.035	0.049
Lead	mg / L	0.00002	EPA 200.8	26-Nov-20/O	0.00003	0.00009	< 0.00002	0.00002
Phosphorus-Total	mg / L	0.01	E3199A. 1	24-Nov-20/K	0.01	< 0.01	< 0.01	< 0.01
Zinc	mg / L	0.005	SM 3120	17-Nov-20/O	0.011	0.018	0.011	0.020

R.L. $=$ Reporting Limit

Test methods may be modified from specified reference method unless indicated by an *
Michelle Dubien
Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie
The analytical results reported herein refer to the samples as received. Reproduction of this analytical report in full or in part is prohibited without prior consent from Caduceon Environmental Laboratories.

ENVIRONMENTAL LABORATORTES Client committed. Quality assured.

Final Report
C.O.C.: G099365

REPORT No. B20-35879

Report To:

Cambium Environmental

PO Box 325, 52 Hunter Street East Peterborough ON K9H 1G5 Canada
Attention: Stephanie Reeder
DATE RECEIVED: 13-Nov-20
DATE REPORTED: 27-Nov-20
SAMPLE MATRIX: Surface Water

Caduceon Environmental Laboratories
285 Dalton Ave
Kingston Ontario K7K 6Z1
Tel: 613-544-2001
Fax: 613-544-2770
JOB/PROJECT NO.: Galway WDS
P.O. NUMBER: 10530-007

WATERWORKS NO.

			Client I.D.		SW 5			
			Sample I.D.		B20-35879-5			
			Date Collected		12-Nov-20			
Parameter	Units	R.L.	Reference Method	Date/Site Analyzed				
Alkalinity(CaCO3) to pH 4.5	mg / L	5	SM 2320B	17-Nov-20/O	106			
Conductivity @ $25^{\circ} \mathrm{C}$	$\mu \mathrm{mho} / \mathrm{cm}$	1	SM 2510B	17-Nov-20/O	240			
pH @ $25^{\circ} \mathrm{C}$	pH Units		SM 4500H	17-Nov-20/O	7.77			
Total Dissolved Solids	mg/L	3	SM 2540D	18-Nov-20/O	123			
Total Suspended Solids	mg/L	3	SM2540D	16-Nov-20/K	< 3			
BOD(5 day)	mg/L	3	SM 5210B	13-Nov-20/K	< 3			
COD	mg/L	5	SM5220C	16-Nov-20/K	30			
Chloride	mg/L	0.5	SM4110C	17-Nov-20/O	5.0			
Phenolics	mg/L	0.002	MOEE 3179	25-Nov-20/K	< 0.002			
Ammonia (N)-Total	mg/L	0.01	$\begin{gathered} \text { SM4500- } \\ \text { NH3-H } \end{gathered}$	18-Nov-20/K	0.17			
Sulphate	mg/L	1	SM4110C	17-Nov-20/O	6			
Nitrite (N)	mg / L	0.05	SM4110C	17-Nov-20/O	<0.05			
Nitrate (N)	mg/L	0.05	SM4110C	17-Nov-20/O	< 0.05			
Total Kjeldahl Nitrogen	mg/L	0.1	E3199A. 1	24-Nov-20/K	0.7			
Mercury	mg/L	0.00002	SM 3112 B	18-Nov-20/O	< 0.00002			
Hardness (as CaCO3)	mg/L	1	SM 3120	17-Nov-20/O	128			
Arsenic	mg/L	0.0001	EPA 200.8	26-Nov-20/O	0.0006			
Barium	mg/L	0.001	SM 3120	17-Nov-20/O	0.039			
Boron	mg / L	0.005	SM 3120	17-Nov-20/O	0.006			
Cadmium	mg/L). 000015	EPA 200.8	26-Nov-20/O	< 0.000015			
Chromium	mg/L	0.001	EPA 200.8	26-Nov-20/O	< 0.001			
Copper	mg/L	0.0001	EPA 200.8	26-Nov-20/O	0.0004			
Iron	mg / L	0.005	SM 3120	17-Nov-20/O	0.126			
Lead	mg / L	0.00002	EPA 200.8	26-Nov-20/O	0.00006			
Phosphorus-Total	mg / L	0.01	E3199A. 1	24-Nov-20/K	0.02			
Zinc	mg/L	0.005	SM 3120	17-Nov-20/O	0.010			

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an *
Michelle Dubien Lab Manager
Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie
The analytical results reported herein refer to the samples as received. Reproduction of this analytical report in full or in part is prohibited without prior consent from Caduceon Environmental Laboratories.

2020 Annual Report, Galway Waste Disposal Site (Closed) Lot 19, Concession 13, Galway Road, Trent Lakes The Corporation of the Municipality of Trent Lakes Cambium Reference: 10520-007

Appendix D Photographs

2020 Annual Report, Galway Waste Disposal Site (Closed) Lot 19, Concession 13, Galway Road, Trent Lakes The Corporation of the Municipality of Trent Lakes

Photograph 1: Monitor DP1R, April 2020

Photograph 3: Monitor DP2, April 2020

Photograph 2: Monitor DP1R, April 2020

Photograph 4: Monitor DP2, November 2019

2020 Annual Report, Galway Waste Disposal Site (Closed) Lot 19, Concession 13, Galway Road, Trent Lakes The Corporation of the Municipality of Trent Lakes

Photograph 5: Monitor DP3, April 2020

Photograph 7: Monitor DP4, April 2020

Photograph 6: Monitor DP3, November 2020

Photograph 8: Monitor DP4, November 2020

2020 Annual Report, Galway Waste Disposal Site (Closed) Lot 19, Concession 13, Galway Road, Trent Lakes The Corporation of the Municipality of Trent Lakes

Photograph 9: Monitor DP5R, November 2020

Photograph 11: Monitor DP6, April 2020

Photograph 10: Monitor DP5R, November 2019

Photograph 12: Monitor DP6, November 2019

2020 Annual Report, Galway Waste Disposal Site (Closed) Lot 19, Concession 13, Galway Road, Trent Lakes The Corporation of the Municipality of Trent Lakes

Photograph 14: Monitor DP7, May 2018

Photograph 16: Surface water monitoring station SW1,
November 2020

2020 Annual Report, Galway Waste Disposal Site (Closed)
Lot 19, Concession 13, Galway Road, Trent Lakes The Corporation of the Municipality of Trent Lakes

Photograph 17: Surface water monitoring station SW2,
April 2020

Photograph 19: Surface water monitoring station SW3, April 2020

Photograph 18: Dry - Surface water monitoring station SW2, November 2020

Photograph 20: Surface water monitoring station SW3, November 2020

2020 Annual Report, Galway Waste Disposal Site (Closed)
Lot 19, Concession 13, Galway Road, Trent Lakes

Photograph 21: Surface water monitoring station SW4,
April 2020

Photograph 23: Surface water monitoring station SW5, April 2020

Photograph 22: Surface water monitoring station SW4,
November 2020

Photograph 24: Surface water monitoring station SW5, November 2020

2020 Annual Report, Galway Waste Disposal Site (Closed) Cambium Reference: 10520-007

Photograph 25: Surface water monitoring station SW6, November 2018

Photograph 26: Surface water monitoring station SW6, November 2019

2020 Annual Report, Galway Waste Disposal Site (Closed) Lot 19, Concession 13, Galway Road, Trent Lakes The Corporation of the Municipality of Trent Lakes Cambium Reference: 10520-007

Appendix E
 Well Records

 and Climate Change/

Well Tag\#: A 211291 , low
\square

Regulation 903 Ontario Water Resources Act S-19284 Page \qquad of \qquad Well Owner's Information
neman
 760 Well Location

Overburden and Bedrock Materials/Abandonment Sealing Record (see instructions on the back of this form).

32
(41) WATER RECORD (51) CASING \& OPEN HOLE RECOBP

MINISTRY OF THE ENVIRONMENT COPY

MINISTRY OF THE ENVIRONMENT
The Ontario Water Resources Act
WATER WELL RECORD

LOG OF OVERBURDEN AND BEDROCK MATERIALS see instructions,

MINISTRY OF THE ENVIRONMENT COPY

The Ontario Water Resources Commission Act WATER WELL RECORD

Water management in Ontario 1. PRINT ONLY IN SPACES PROVIDED

LOCATION OF WELL IN DIAGRAM BELOW SHOW DISTANCES OF WELL FROM ROAD AND LOT LINE. INDICATE NORTH BY ARROW.

[^0]: *Dissolved mercury to be lab filtered with a 0.45 micron filter for all surface water samples

