2020 Annual Report, Bobcaygeon Transfer Station

Environmental Compliance Approval No. A341307

April 20, 2021

Prepared for: The Corporation of the Municipality of Trent Lakes

Cambium Reference: 10520-005

CAMBIUM INC. 866.217.7900 cambium-inc.com

Peterborough | Barrie | Oshawa | Kingston

Executive Summary

The Bobcaygeon transfer site operates under the Ministry the Environment, Conservation and Parks Environmental Compliance Approval A341307. The Site is on part Lot 17, Concession 19, geographic township of Harvey, Municipality of Trent Lakes, County of Peterborough. The site is at 42 Peterborough County Road 36, near the community of Bobcaygeon. The total site area is 4.0 ha and has an approved refuse placement area of 1.6 ha. The Site ceased landfilling in 2002 and now operates as a waste transfer station.

Groundwater elevations were within historical ranges. The groundwater flow continued to be south-southeasterly. Consistent with historical findings, a predominant downward vertical gradient was calculated between most groundwater monitoring wells.

Water quality at the site is monitored in the shallow (upper) and deep (middle and lower) aquifers. A weak leachate signature and road salt impacts were present in the upper bedrock monitors immediately adjacent the waste mound. There were minimal impacts to the deep bedrock aquifer, confirming that impacts were restricted vertically at the Site. Impacts were not interpreted to extended beyond the property boundary. The site complied with the Ministry of the Environment, Conservation and Parks Guideline B-7 (Reasonable Use Concept).

Non-site related impacts were in the off-site monitoring wells adjacent Wilderness Park Road, south of the site.

Landfill gas monitoring was completed at the site at all monitoring wells and methane was not detected at concentrations greater than the instrument detection limit.

The site was operated in compliance with the conditions of the site approval.

Recommendations have been provided regarding the future operation of the Site and work to be completed in 2021.

2020 Annual Report, Bobcaygeon Transfer Station 42 Peterborough County Road 36, Trent Lakes The Corporation of the Municipality of Trent Lakes Cambium Reference: 10520-005 April 20, 2021

Respectfully submitted,

Cambium Inc.

Heather Dzurko, M.Sc. Solid Waste Specialist

G 4 L 0 PRACTISING MEMBER 2516 Ř10

Stephanie Reeder, P.Geo., C.E.T. Senior Project Manager

P:\10500 to 10599\10520-005 MTL - Bobcaygeon AMP\Deliverables\AMR 2020\Final\2021-04-20 Bobcaygeon AMR RPT Final.docx

Table of Contents

1.0	Introduction	1
1.1	Site Location	1
1.2	Site Description	2
1.3	Scope of Work	2
2.0	Methodology	3
2.1	Groundwater Monitoring Program	3
2.2	Residential Well Monitoring Program	4
2.3	Landfill Gas Monitoring Program	5
2.4	Site Review and Operations Overview	6
3.0	Geological and Hydrogeological Context	7
3.1	Topography and Drainage	7
3.1.1	Precipitation Data	7
3.2	Hydrogeology	8
3.2.1	Well Records	10
3.2.2	Groundwater Flow Direction	11
3.2.3	Vertical Gradients	12
3.2.4	Conceptual Site Model	13
4.0	Results and Discussion	14
4.2	Groundwater Quality	14
4.2.1	Background Groundwater Quality	15
4.2.2	Leachate Characteristics	16
4.2.3	Perimeter Monitoring Wells	16
4.2.3.1	Shallow Aquifer	16
4.2.3.2	Deep Aquifer	17
4.2.4	Off-site Monitoring Wells	18
4.2.4.1	Shallow Aquifer	18
4.2.4.2	Deep Aquifer	19

Glossa	ry of Terms	. 42
Referen	ices	. 40
6.0	Conclusions and Recommendations	. 38
5.10	Compliance with Ministry Approval	37
5.9	Site and Documentation Reviews and Updates	36
5.8.3	Municipal Wide Diversion	35
5.8.2	Site Diversion	34
5.8.1	Site Usage	34
5.8	Materials Summary	33
5.7	Monitoring Well Security	33
5.6	Waste Refusal	32
5.5	Complaints and Incidents	32
5.4.3	Final Cover Integrity	32
5.4.2	Roads	32
5.4.1	Litter Control	31
5.4	Site Inspections	31
5.3	Training	30
5.2	Site Operation	29
5.1	Site Access and Security	28
5.0	Site Operations	. 28
4.5	Adequacy of Monitoring Program	26
4.4	Summary of Landfill Gas Monitoring	26
4.3	Residential Water Quality	25
4.2.7	Groundwater Compliance Assessment	22
4.2.6	Summary of Groundwater Quality	21
4.2.5	Groundwater VOC Analysis	21

List of Embedded Tables

Embedded Table 1	Site Details	2
Embedded Table 2	Historical and 2020 Precipitation Data	8
Embedded Table 3	Well Installation Depths and Water Table Elevations	9
Embedded Table 4	Summary of Water Bearing Fractures	9
Embedded Table 5	Calculated Hydraulic Gradients, 2020	12
Embedded Table 6	Leachate Indicator Parameters	16
Embedded Table 7	Groundwater RUC Exceedances	24
Embedded Table 8	Summary of Site Usage	34
Embedded Table 9	Summary of Diverted Materials	35
Embedded Table 10	Summary of Limited MHSW Collected - Municipality	35

List of Appended Figures

- Figure 2 Local Topography Plan
- Figure 3 Existing Site Conditions
- Figure 4 Upper Bedrock Groundwater Configuration
- Figure 5 Middle Bedrock Groundwater Configuration
- Figure 6 Lower Bedrock Groundwater Configuration
- Figure 7 Bedrock Elevations
- Figure 8 Groundwater Elevation Interface/Upper Bedrock
- Figure 9 Groundwater Elevation Middle Bedrock
- Figure 10 Groundwater Elevation Lower Bedrock

2020 Annual Report, Bobcaygeon Transfer Station 42 Peterborough County Road 36, Trent Lakes The Corporation of the Municipality of Trent Lakes Cambium Reference: 10520-005 April 20, 2021

List of Appended Tables

- Table 1
 Environmental Monitoring Program
- Table 2Groundwater Elevation Data
- Table 3Monitoring Well Information
- Table 4Vertical Hydraulic Gradients
- Table 5Groundwater Quality Interface/Upper Bedrock
- Table 6Groundwater Quality Middle and Lower Bedrock
- Table 7Groundwater Quality VOCs
- Table 8
 Residential Well Water Quality
- Table 9Landfill Gas Monitoring Data
- Table 10
 Monthly Summary of Materials Accepted and Transferred

List of Appendices

- Appendix A Environmental Compliance Approval A341307
- Appendix B Field and Precipitation Data
- Appendix C Laboratory Certificates of Analysis
- Appendix D Photographs
- Appendix E Borehole Logs

1.0 Introduction

The Corporation of the Municipality of Trent Lakes (Municipality) retained Cambium Inc. (Cambium) to complete the 2020 annual monitoring program for the Bobcaygeon Transfer Station and closed landfill (Site). The Site operates under Ontario Ministry the Environment, Conservation and Parks (Ministry) Environmental Compliance Approval (ECA) No. A341307, issued on October 2, 2017 (Appendix A).

To aid in the understanding of the history and development of the Site, the following information is included digitally in the report package:

- Bobcaygeon Landfill Report, Preliminary Groundwater Investigation (EMMS, 1995), and Addendum #1 to this document
- North Landfill Site Closure Plan (TSH, 2002), in Association with Hydroterra Limited
- Updated Hydrogeologic Report, 2002 to 2006 Results, Township of Galway-Cavendish and Harvey North Landfill (Hydroterra, 2006)
- Environmental Compliance Approval Application, with Design and Operations Report, Maps and other supporting documentation to amend ECA, dated May 10, 2016
- Historical water quality (WSP, 2017)
- Transfer Station, Safety, Emergency, and Spills Procedures (MTL, 2020a)
- Transfer Station Standard Operating Procedures (MTL, 2020b)

1.1 Site Location

The Site is on part of Lot 17, Concession 19, geographic Harvey Township, Municipality of Trent Lakes, County of Peterborough. The municipal address for the Site is 42 Peterborough County Road 36, near the community of Bobcaygeon (Figure 1). The Universal Transverse Mercator (UTM) coordinates for the Site entrance are Zone 17, 695520 m east, 4936383 m north.

1.2 Site Description

The Site operated as a natural attenuation landfill for the disposal of domestic waste from 1978 until 2002. Since 2003, the Site is operated by the Township as a transfer station for the collection of non-hazardous residential, industrial, commercial, and institutional waste from within the Municipality of Trent Lakes, as well as a number of items that are collected for diversion. Site Details are in Embedded Table 1. A Local Topography Plan and Existing Conditions plan are on Figure 2 and Figure 3, respectively.

Embedded Table 1 Site Details

Total Site Area	4.0 ha
Closed Landfill Area of Refuse Placement	1.6 ha

1.3 Scope of Work

The scope of the 2020 work program was based on the results of the 2019 monitoring program (Cambium, 2020), the requirements of the ECA, and included:

- Groundwater elevation monitoring
- Groundwater sampling and analysis
- Evaluation of groundwater quality against the Ontario Drinking Water Quality Standards (ODWQS) and Reasonable Use Concept (RUC) values developed in accordance with Ministry Guideline B-7
- An overview of site development and operations
- Preparation of this annual report

This report presents the results of the 2020 work program, provides an assessment of the current landfill impact of the Site on the surrounding groundwater environment, and a summary of the operational activities at the Site. Cambium has provided recommendations for the 2021 monitoring program and site operations based on the 2020 results and assessment.

2.0 Methodology

The 2020 work program was completed to maintain compliance with the Site ECA and Ministry guidelines and regulations. As such, the monitoring program was completed consistent with *Guidance Manual for Landfill Sites Receiving Municipal Waste* (MOEE, 1993) and *Monitoring and Reporting for Waste Disposal Sites, Groundwater and Surface Water, Technical Guidance Document* (MOE, 2010).

Field tasks were completed following Cambium's Standard Operating Procedures developed from recognized standard procedures such as those listed above and *Guidance on Sampling and Analytical Methods for use at Contaminated Sites in Ontario* (MOEE, 1996). A health and safety program was developed for site-specific conditions and all Cambium personnel working on the project were familiarized and required to follow the identified protocol.

Groundwater samples were stored in coolers with freezer packs and maintained less than 10°C after collection and during transport to Caduceon Environmental Laboratories (Caduceon) in Kingston, Ontario. Caduceon is accredited by the Canadian Associations for Laboratory Accreditation Inc. for specific environmental tests listed in the scope of accreditation. Groundwater samples were submitted at the frequency and for analysis of the parameters outlined in Table 1.

2.1 Groundwater Monitoring Program

The following tasks were completed as part of the 2020 groundwater monitoring program:

- Prior to sampling, water levels were measured at each monitoring well using an electronic water level tape.
- The purge volume was calculated on-site during each monitoring event using the measured water level, well depth, and the borehole diameter. Each groundwater monitoring well to be sampled was purged of approximately three well bore volumes. For wells with low recovery, at least one saturated borehole volume was purged prior to sampling. Purged water was disposed on-site, down-gradient of each respective well.

- Samples were collected using dedicated polyethylene tubing equipped with inertial-lift foot valves.
- Groundwater samples for metals and dissolved organic carbon (DOC) analysis were field filtered.
- Field measurements were recorded for pH, conductivity, temperature, dissolved oxygen (DO), and oxygen reduction potential (ORP).

Groundwater samples were collected on April 20 and November 9 from the on-site monitoring wells listed below:

•	97-1-U	•	97-1-M	•	97-1-L	•	97-2-U	•	97-2-L
•	97-3	•	98-1-U	•	98-1-M	•	98-1-L	•	98-2-U
•	98-2-M	•	98-2-L	•	98-3-U	•	98-3-M	•	98-3-L
•	00-1-U	•	00-1-M	•	00-1-L	•	BH16-1S	•	BH16-1D

Monitoring wells included in the groundwater monitoring program are shown on Figure 2. The UTM coordinates for the monitoring locations are in Table 2. Groundwater results are discussed in Section 4.2. Field data sheets are in Appendix B. Laboratory Certificates of Analysis are in Appendix C. Photographs of each monitoring location are in Appendix D.

Blind duplicate groundwater samples were collected from 97-3 and 98-3-U in April and November as part of the Quality Assurance/Quality Control (QA/QC) program. As these field duplicates equate to 10% of the total samples collected, this is an adequate QA/QC program for groundwater. In addition to these samples, the laboratory completes internal QA/QC. The results of the QA/QC program are presented in Section 4.1.

2.2 Residential Well Monitoring Program

Residential well sampling was not completed in 2020 due to the COVID-19 pandemic. Residential wells identified in the monitoring program include:

- Empire Fuels
 515 Riverside
 314 Riverside
 396 Riverside
 - 320 Riverside 68 County Road 36 130 County Road 36

Results from the historical residential well sampling are summarized in Table 8 and discussed in Section 4.3. Available water well records are in Appendix E.

Residential well locations are included on Figure 2. Field data sheets are in Appendix B and laboratory Certificates of Analysis provided by Caduceon are in Appendix C.

2.3 Landfill Gas Monitoring Program

Landfill gas (LFG) is not actively managed at the Site. The large, open site area and isolated location from the public supports passive landfill gas management, which allows generated landfill gas to naturally disperse through the waste and naturally-permeable cover to the atmosphere.

LFG monitoring was conducted at the monitoring wells during the spring and autumn sampling events using an RKI Eagle 1 Gas Monitor, equipped with a methane sensor. The purpose of the monitoring is to assess compliance with Section 4.10 of *Landfill Standards, A Guideline on the Regulatory and Approval Requirements for New and Expanding Landfilling Sites* (MOEE, 1998), which states the concentration of methane gas in the subsurface may not exceed 2.5% by volume at the property boundary.

Landfill gas, specifically methane and carbon dioxide, is derived from the decomposition of organic wastes. Production of LFG from landfilled wastes normally reaches a maximum rate approximately two years after placement and may continue at this rate for many years. The biological decomposition process results in the generation of LFG until some period, likely decades, after the landfilling of that waste ceases. Hazardous concentrations for methane are 5 to 15% methane by volume or between 50,000 and 150,000 ppm.

The LFG monitoring results are in Table 9 and discussed in Section 4.4.

2.4 Site Review and Operations Overview

Site operations were observed during site visits completed in April and November 2020. During these visits, the items listed below were inspected on accessed areas of the Site and observations noted in the field file. In January 2021, the Township provided additional 2020 site operations information. Site inspection results are presented in Section 5.0.

- Litter control
- Condition and layout of recycling bins
- Status of monitoring well security
- Condition and layout of access roads, access gates
- Condition of final cover

3.0 Geological and Hydrogeological Context

3.1 Topography and Drainage

The Site is in the Kawartha Lakes tertiary watershed and the Pigeon Lake quaternary watershed. The flow in the area generally collects from the northeast areas of Peterborough County and drains southwest through Trent Lakes and into the Lower Buckhorn Lake (TCC, 2014).

Locally, the Site is well drained. Drainage is controlled by topography and through overland flow which collects in low lying areas, migrating south via natural depressions and road side ditches, ultimately discharging to Pigeon Lake (1 km south). Despite temporal drainage, there are no reported permanent or semi-permanent surface water features in the down-gradient flow path between the Site and Pigeon Lake.

The closest provincially significant wetland is identified as the Nogie's Creek Mouth about 4 km northeast of the Site. Additionally, there are two evaluated wetlands identified as Sturgeon Lake No. 7 to the west and Bobcaygeon West to the southwest. Both evaluated wetlands are about 3.5 km from the Site. Based on the limited surface water features surrounding the Site, a surface water monitoring program does not exist for the Site.

3.1.1 Precipitation Data

A review of the 2020 precipitation data for Peterborough County (Government of Canada, 2021) in comparison to the average precipitation data for 1981 to 2010 for Renfrew (Government of Canada, 2015) indicated that, similar to 2019, the annual precipitation was notably less than normal. January and August received more precipitation than normal, while the remaining months received less. The precipitation in April and November was about 40% lower than normal. The monthly precipitation, as well as the amount of precipitation during and in the three days prior to the sampling events is summarized in Embedded Table 2. Refer to Appendix B for field sheets and climate data.

Embedded Table 2	Historical and 2020 Preci	pitation Data

Sampling Date	Average Monthly Precipitation (mm) (1981 – 2010)	2020 Precipitation (mm)	Precipitation During and Prior to Sampling (mm)
April 20	68.6	41.1	4.5
November 9	86.4	55	0.0

3.2 Hydrogeology

The hydrogeology of the Site has been characterized by others and documented in the following reports:

- Bobcaygeon Landfill Report, Preliminary Groundwater Investigation (EMMS, 1995) and Addendum #1 to this document
- North Landfill Site Closure Plan (TSH, 2002), in Association with Hydroterra Limited
- Updated Hydrogeologic Report, 2002 to 2006 Results, Township of Galway-Cavendish and Harvey North Landfill (Hydroterra, 2006)
- Township of Galway-Cavendish and Harvey North Landfill Site, 2007 Annual Monitoring Report (TSH, 2008)
- 2016 Annual Monitoring Report Bobcaygeon Closed Landfill Site / Transfer Station (WSP, 2017)

The following is a summary of currently understood hydrogeological setting of the Site based on the above references. Refer to Appendix E for borehole logs.

There are currently 20 monitoring wells at the Site, installed as well nests in eight locations from 1997 to 2016. Due to a general lack of shallow overburden groundwater, all wells are installed as bedrock wells, with the exception of three wells which are installed as interface wells (97-1-U, 97-2-U, and 97-3). The well nests typically include three installation depths, with the exception of monitoring well 97-3 which is installed as a single well and well nests 97-2 and

BH16-1 which have only two installation depths. Specifically, 97-2-U monitors the upper unit, BH16 1S monitors the middle unit, and monitors 97-2-L and BH16-1D monitor the lower unit.

Embedded Table 3 provides a summary of the minimum and maximum well depths in each region (i.e., upper, middle, and lower), as well as the average groundwater elevations observed.

Well	Screen Elevation (masl)		Depth (mbgs)		Average Water Elevation (masl)		
Group	Min	Max	Min	Max	Min	Max	Average
Upper	251.7	262.5	2.6	10.1	255.3	261.9	257.6
Middle	246.3	254.5	7.3	15.5	253.3	260.3	255.6
Lower	239.0	252.5	13.2	22.9	252.8	256.7	254.5

Embedded Table 3 Well Installation Depths and Water Table Elevations

Note:

1. masl means metres above sea level.

2. mbgs means metres below ground surface.

The overburden encountered on-site consists primarily of sand and gravel or sand and gravel till (some cobbles and boulders, clay, dense) and ranged in thickness from 3.0 mbgs (00-1) to 7.62 mbgs (97-2). Although no significant overburden water table was encountered, the overburden was described as moist to wet in available boreholes with the exception of well nest 00-1 where it was noted to be dry.

Bedrock in and around the Site is limestone of the Verulam Formation, underlain by limestone and shale of the Gull/River Shadow Lake Formation and/or Precambrian granitic and metasedimentary rocks. All bedrock wells on-site were installed in the limestone bedrock, with the exception of monitor 00-1-L which was installed in limestone and red shale. The limestone bedrock was reported as competent with limited water bearing fractures. The only water bearing fractures reported are summarized in Embedded Table 4. Note that no information on water bearing fractures were provided from the wells installed in 2016 (BH16-1).

	····, ···., ····.,			
Well	Region	Fracture Depth (mbgs)		
97-3	Upper	4.6		
97-1	Upper	4.3		
00-1	Upper	5.2 to 7.0		

Embedded Table 4 Summary of Water Bearing Fractures

Despite the limited water bearing fractures noted on the borehole logs, the bedrock formations in the vicinity of the Site were reported to be highly permeable (TSH, 2002).

Bedrock elevations for the monitoring wells at the Site range from 262.2 to 254.8 masl. Although the bedrock slopes to the south, bedrock elevations to the southeast of the waste mound are lower than the bedrock elevations along Wilderness Park Road, southwest of the Site and waste mound. As discussed further in Section 3.2.2, it is interpreted that the groundwater table generally follows the slope of the bedrock and flows south-southeast. There is a small component of southwest flow that exists from the waste mound to wells 97-3 and 97-2 given the slope of the bedrock in this area. Refer to Figure 7 for bedrock elevations.

A description of monitors used to evaluate each groundwater area is described below:

- Well nest 00-1 is northwest of the waste mound and represents background water quality.
- 97-3 is immediately adjacent and down-gradient to the waste mound. Due to the installation depth (shallow aquifer), groundwater monitoring well 97-3 has been deemed to be representative of landfill leachate quality at the Site.
- Well nests 97-1, 97-2, and BH16-1 are down-gradient of the waste mound, adjacent the southern property boundary. Well nests 97-1 and BH16-1 are down-gradient and southeast of the waste mound. Well nest 97-2 is down-gradient and southwest of the waste mound.
- Down-gradient off-site water quality is monitored by well nests 98-1, 98-2, and 98-3 south of the property boundary. Nests 98-1 and 98-2 are adjacent to and north of Wilderness Park Road, 125 m south of the Site. Nest 98-3 is immediately south (within 30 m) of the property boundary, south of well nest 97-1.

3.2.1 Well Records

Of the Ministry water well records available in the vicinity of the Site (Figure 2), 40 records were for domestic water supply wells down-gradient of the Site, between the waste disposal property and Pigeon Lake (Cambium, 2018). The records were for wells installed from 1950 to 2016, with the majority of the wells installed before the mid-1990s. As such, the amount of detail and accuracy of the locations of the well records varied significantly.

A review of these records indicated that all wells were installed in bedrock, primarily in limestone. The domestic water supply wells were installed at depths ranging from 3.7 mbgs to 38.1 mbgs, at an average depth of 10.6 mbgs. Shale was noted in a few well records, typically around 12 to 15 mbgs and sandstone was noted in at least one record at 7.6 mbgs, extending to 21.3 mbgs. Where observed, granitic bedrock was reported below the limestone, shale, and/or sandstone bedrock, at depths typically ranging from 16.8 mbgs to 21.3 mbgs. There was one well record where granite was at only 2.7 mbgs.

Given the number of domestic water supply wells down-gradient of the Site, a residential water quality program is completed for the Site, as discussed in Section 4.3.

3.2.2 Groundwater Flow Direction

Historically, the groundwater direction has been reported to be influenced by the topography of the underlying bedrock. Groundwater elevations collected from the upper, middle, and lower bedrock monitoring wells in 2020 were used to define the horizontal groundwater flow direction at the Site.

Groundwater elevation data is summarized in Table 2. The elevations of each region have been displayed separately on Figure 8 (upper), Figure 9 (middle), and Figure 10 (lower). Significant fluctuations in groundwater elevations are common in the middle and lower water tables (with the exception of 97-2-L), generally following a seasonal pattern. Water elevations in the shallow aquifer are generally more static. Groundwater elevations were within historical ranges in 2020.

Water elevations typically vary significantly within each well nest, with the exception of nests 97-1 and 98-3 where the middle and lower wells have been similar and inferred to be hydraulically connected.

As summarized in Embedded Table 3, there are three distinct water table elevations. When comparing the average water table elevations from 2014 to 2020 at the Site, the middle and lower regions were interpreted to be hydraulically connected to some degree, whereas the upper wells represent a separate aquifer. As such, the upper region (and wells) is identified as

the shallow aquifer and the middle and lower regions are identified as the deep aquifer for assessment purposes.

The general groundwater flow direction was south-southeast in 2020 as displayed on Figure 4 (upper), Figure 5 (middle), and Figure 6 (lower).

As briefly discussed in Section 3.2, the bedrock elevation is high at well 97-3 relative to adjacent well nest 97-2 (Figure 7). Furthermore, the bedrock elevation reported along Wilderness Park Road was higher than the bedrock elevation reported at well nests 97-1 and 98-3. As such, there is a preferential flow pathway to the southeast from the waste mound, with the potential for a small component of flow to the southwest toward well nest 97-2. This is reflected in the water table elevations in the middle and lower regions (deep aquifer), as the water elevations at well nests 98-1 and 98-2 south of the Site are typically higher than the water table elevations at well nest 97-1 and 98-3 southeast of the waste mound. This indicates a potential for a northward component of flow from Wilderness Park Road. This was more predominant in April 2020 as the elevation at 97-2-L was lower than typical in the spring (albeit the elevation was consistent with autumn water levels and was attributed to the low precipitation received in early 2020). Regardless, the primary flow path for impacted water is to the south-southeast from the waste mound, ultimately to Pigeon Lake, with a minor component of flow to the southwest in the area of well nest 97-2.

The hydraulic gradients calculated in 2020 are summarized in Embedded Table 5.

Event	Upper	Middle	Lower
Spring	0.020 m/m southeast	0.033 m/m southeast	0.038 m/m southeast
Spring	0.009 m/m southwest	0.015 m/m southwest	0.024 m/m northwest
Autumn	0.031 m/m southeast	0.038 m/m southeast	0.017 m/m southeast
	0.013 m/m southwest	0.011 m/m southwest	0.008 m/m southwest

Embedded Table 5 Calculated Hydraulic Gradients, 2020

3.2.3 Vertical Gradients

Using elevations from the upper (interface/bedrock), middle (bedrock), and lower (bedrock) monitors at the Site, vertical gradients were calculated in 2020 (Table 4). Downward vertical

gradients were calculated at all monitoring well nests with the exception of monitors 98-1-U/L (April), 98-1-M/L (April), and 98-2-M/L (April). Vertical gradients were generally consistent with historical results with the exception of an upward gradient noted at 98-1-U/L in April.

3.2.4 Conceptual Site Model

Given the lack of surface water features surrounding the Site, the depth to the water table (i.e., greater than 2 mbgs and an average of 6 mbgs), and the predominant downward vertical gradients calculated, the primary flow path for leachate impacted groundwater is the bedrock aquifer. Impacted groundwater will flow primarily south-southeast from the waste mound toward Pigeon Lake. Due to the bedrock topography, there is a small component of flow that extends southwest from the waste mound, toward well nest 97-2. The primary receptor of potential impacts from the Site are the adjacent domestic water supply wells south of the Site.

4.0 Results and Discussion

Water quality results from the monitoring program are used to assess the existence, extent, and degree of impacts to the groundwater environment related to waste disposal site activities at the Site.

To ensure appropriate actions are in place to respond to degradation in groundwater quality beyond an acceptable level, site-specific trigger levels and contingency measures aid in the assessment of impacts from leachate contamination and help to prevent adverse impacts to the environments surrounding the waste disposal site.

This section presents the results of the 2020 monitoring program.

4.1 Quality Assurance / Quality Control

Results from the analyses completed on the blind duplicate QA/QC samples were evaluated. Parameter concentrations were considered significantly different if the relative percent difference (RPD) between the duplicate and the parent samples was greater than 30% when at least one result was greater than five times the reported detection limit (RDL).

The duplicate groundwater analyses were compared to the originals. Overall, the duplicate samples correlated well with the parent samples and met the data quality objective of 30%. The results were interpreted with confidence.

4.2 Groundwater Quality

Groundwater analysis data for 2011 to 2020 are in Table 5, Table 6, and Table 7. Data from 2002 to 2010 is included digitally with the report package.

To assess water quality impacts related to landfill site operations, the analytical results for groundwater samples collected on-site were compared to background water quality and historical data, and Site compliance was assessed using ODWQS (MOE, 2006) and RUC (MOEE, 1994a).

4.2.1 Background Groundwater Quality

When evaluating the impact of any waste disposal site on a groundwater resource, a reference point or value must be established to assist in determining the magnitude of the impact. The quality of the groundwater that is non-impacted by the waste disposal site operation (i.e., background water quality) should be used for comparison purposes.

Given the location of monitoring nest 00-1 up-gradient of the waste mound, the groundwater results for these monitoring wells are representative background water quality at the Site.

The water quality at wells 00-1-M and 00-1-L have been similar, confirming these two units are hydraulically connected and make up the deep aquifer. Some key differences between the shallow aquifer (i.e., 00-1-U) compared to the deep aquifer include:

- Elevated concentrations of alkalinity, barium, chloride, calcium, nitrate, and sodium in the shallow aquifer.
- Low concentrations of boron, hardness, iron, magnesium, manganese, and sulphate.
- Evidence of impacts at monitor 00-1-U have been exhibited by seasonally elevated concentrations of alkalinity, total dissolved solids (TDS), conductivity, chloride, hardness, sodium, calcium, and barium. Given the up-gradient location of this monitor the impacts were attributed to a non-waste related source (likely road salt).
- TDS concentrations regularly exceed the ODWQS at 00-1-U and historically at 00-1-L. Well 00-1-M has only intermittently exceeded the ODWQS for TDS. All three background monitors and iron and manganese concentrations intermittently exceed the ODWQS at monitors 00-1-M and 00 1-L. DOC concentrations have intermittently exceeded the ODWQS at monitors 00-1-U and 00-1-M.

Water quality data from 2020 was consistent with historical results at these three locations. The data from 2020 indicated stable parameter concentrations and the water quality at these locations remained representative of background groundwater quality.

4.2.2 Leachate Characteristics

A comparison of water quality results from leachate monitoring well 97-3 to background monitoring well nest 00-1 indicated that the landfill leachate is characterized by elevated concentrations of those parameters outlined in Embedded Table 5, identified as the leachate indicator parameters (LIPs) for the Site.

Embedded Table 6 Leachate Indicator Parameters

alkalinity	conductivity	barium	sodium
chloride	ammonia	hardness	boron
calcium	iron	TDS	Chemical oxygen
DOC	manganese		demand (COD)

In 2020, most parameters were within historical concentration ranges; however, the following was noted:

• Concentrations for many LIPs were lower than average at 97-3 in November 2020.

4.2.3 Perimeter Monitoring Wells

4.2.3.1 Shallow Aquifer

A weak leachate signature is present at monitors 97-1-U and 97-2-U; however, concentrations have typically been less than the leachate monitor (97-3). This confirms that natural attenuation is occurring at the Site. Historically, concentration of all LIPs have been greater at monitor 97 2-U compared to monitor 97-1-U with the exception of COD, confirming the southwest flow component discussed in Section 3.2.2. Concentrations of many parameters fluctuate seasonally at this location, consistent with 00-1-U.

In 2020, there were spikes of several LIPS at 97-1-U including: barium, calcium, hardness, iron, manganese, and COD. Elevated concentrations of barium, boron, chloride, iron, sodium, and TDS were also at 97-2. Despite the elevated concentrations noted in 2020 and seasonal fluctuations, parameters concentrations have been stable over time at these wells. An increasing trend for sodium may be developing at 97-2-U.

Consistent with the background water quality at monitor 00-1-U, TDS (persistently) and DOC (intermittently) concentrations have exceeded the ODWQS at monitors 97-1-U and 97-2-U. In addition, concentrations of hardness at both locations and iron and chloride at well 97-2-U have intermittently exceeded the ODWQS. The following ODWQS exceedances occurred during one or more events in 2020:

- 97-1-U: iron, manganese, hardness, and TDS
- 97-2-U: chloride, iron, hardness, and TDS

4.2.3.2 Deep Aquifer

Limited, if any, impacts have been evident in the deep aquifer at wells 97-1-M, 97-1-L, 97-2-L, BH16 1S, and BH16-1D. The only parameter concentrations elevated at these down-gradient locations compared to the background water quality at 00-1-M and 00 1-L have been:

97-1-M:	barium
97-1-L:	barium
97-2-L:	boron
BH16-1S:	alkalinity, COD, barium, calcium
BH16-1D:	boron

The water quality results in the perimeter deep aquifer wells have generally met the ODWQS criteria with the exception of occasional TDS exceedances at monitor 97-1-M and DOC exceedances at all locations.

In 2020, the water quality at these monitors remained consistent with historical results. Only DOC exceeded the ODWQS at BH16-1S in April.

Although the elevated LIP concentrations may indicate marginal impacts from leachate at these deep monitoring wells, it is more likely the elevated concentrations are attributable to natural variation in the deep aquifer water quality.

4.2.4 Off-site Monitoring Wells

4.2.4.1 Shallow Aquifer

Monitoring wells 98-1-U, 98-2-U, and 98-3-U monitor the water quality in the upper bedrock, south of the Site.

Water quality at monitor 98-3-U has historically been similar to background water quality with the exception of slightly elevated barium and boron concentrations. In recent years, COD has also been elevated. Notably, these trends mirror those in up-gradient monitor 97-1-U.

Water quality at monitors 98-1-U and 98-2-U have been comparable to each other and several parameter concentrations have been greater than background water quality including the following: alkalinity, barium (98-1-U only), boron, calcium, conductivity (98-2-U only), hardness, DOC (98-1-U only), TDS. Similar to monitor 98-3-U, many of the concentrations at one or both of these monitors have been elevated in the upgradient monitor 97-2-U. It is further noted that the concentrations of alkalinity, boron, hardness, DOC, and calcium were similar to or elevated compared to 97-2-U.

The following ODWQS exceedances have been reported at these monitors:

- 98-1-U: Seasonal exceedances of alkalinity, TDS, and hardness; intermittent exceedances of DOC
- 98-2-U: Persistent exceedances of TDS; intermittent exceedances hardness; occasional exceedances of DOC, iron, and manganese

98-3-U: Occasional exceedances of TDS, DOC, and manganese since 2017

In 2020, the water quality in the off-site down-gradient upper bedrock monitors remained consistent with historical results with the exceptions:

98-3-U: elevated concentrations of many parameters in April. With exception of DOC, concentrations were reported within historical ranges in November. Despite seasonal fluctuations, parameter concentrations of many parameters have been

gradually increasing over time at this well (e.g., barium, calcium, chloride, hardness, sodium).

In 2020, the following ODWQS were exceeded on one or more occasions:

- 98-1-U: TDS, hardness
- 98-2-U: TDS, hardness, iron, manganese
- 98-3-U: hardness, DOC

Marginal impacts have been present at 98-3-U. Elevated parameter concentrations at 98-1-U and 98-2-U have not been attributed to the Site, but rather to a non-waste related source such as the adjacent municipal road. This is supported by the elevated parameter concentrations at these locations compared to up-gradient wells in closer proximity to the landfill. Further, groundwater elevations have typically been higher at well nest 98-1 (and 98-2) compared to well nests 97-1 and 98-3 indicating there is a component of flow to the northeast from well nest 98-1 and Wilderness Park Road (Cambium, 2019).

As noted in the *2016 Annual Monitoring Report* (WSP, 2017), historical landfilling activities reportedly occurred south of the Site. It is speculated that the waste disposal occurred between the property boundary and nested monitors 98-1 and 98-2; however, no confirmation on the location of the landfilling has been received from the Ministry.

4.2.4.2 Deep Aquifer

Monitoring wells 98-1-M, 98-2-M, and 98-3-M monitor the water quality in the middle bedrock and monitoring wells 98-1-L, 98-2-L, and 98-3-L monitor the lower portion of the deep bedrock aquifer south of the Site.

The only deep aquifer monitoring well south of the Site with elevated parameter concentrations has been monitoring well 98-2-L. The following parameter concentrations have typically been elevated at this location: conductivity, TDS, chloride, ammonia, hardness, boron, calcium, iron, manganese, and sodium. Although not a LIP, sulphate has also been elevated at this location. Consistent with the shallow aquifer, these elevated parameter concentrations were also greater than monitor 97-2-L, in closer proximity to the waste mound.

The remaining deep aquifer wells have had only limited elevated parameter concentrations, if any, including the following:

- 98-1-M: barium
- 98-1-L: conductivity, TDS, boron, sodium, sulphate
- 98-3-M: none
- 98-3-L: sulphate, boron, manganese, sodium

The following ODWQS exceedances have been at these monitors:

98-1-M: Occasional exceedances of DOC

98-1-L: Persistent exceedances of TDS; occasional exceedances of DOC and hardness

98-2-M: Occasional exceedances of DOC and manganese

98-2-L: Persistent exceedances of TDS, sulphate, hardness, iron, and manganese;

occasional exceedances of DOC

- 98-3-M: Occasional exceedances of TDS, iron, and manganese prior to 2017; occasional exceedances of DOC
- 98-3-L: Occasional exceedances of TDS and DOC

In 2020, the water quality at monitors 98-1-M, 98-1-L, 98-2-M, 98-2-L, 98-3-M, and 98-3-L remained consistent with historical results. Some gradual increasing trends were evident at 98-2-L including boron, calcium, chloride, and hardness. The following ODWQS exceedances were noted:

- 98-1-L: TDS
- 98-2-L: TDS, sulphate, hardness, iron, and manganese
- 98-3-M: field pH at 98-3

Elevated parameter concentrations south of the Site in the deeper aquifer have been attributed to non-site related impacts.

4.2.5 Groundwater VOC Analysis

Volatile organic compound (VOC) analysis was completed during the autumn sampling event on monitoring wells 98-2-U and 98-2-L. All VOC parameter concentrations were less than RDLs consistent with historical results (Table 7).

4.2.6 Summary of Groundwater Quality

Water quality down-gradient of the waste mound is monitored in both the shallow (upper) and deep aquifers (middle and lower). Aside from minor connectivity at well nest 97-1, the shallow and deep aquifer are not interpreted to be hydraulically connected.

Background water quality is monitored at well nest 00-1. Minor impacts from a non-site related source such as road salt have been in the shallow aquifer at this location. Leachate quality has been characterized at 97-3, immediately south and adjacent the waste mound. The leachate quality at the Site has had elevated concentrations of most analyzed parameters. Notably concentrations of sulphate and nitrate are low in the leachate.

There was a weak leachate signature present at shallow aquifer monitors 97-1-U and 97-2-U, southeast and southwest of the waste mound, respectively. Impacts have been greater southwest (and closer) to the waste mound; however, road salt impacts have also been evident at this location. Limited impacts, if any, have been in the deep aquifer on-site, monitored by wells 97-1-M, 97-1-L, 97-2-L, BH16-1S, and BH16-1D.

Marginal impacts (attributed to the Site) have been evident at 98-3-U. Impacts were not present in the deep aquifer at this location (98-3-M and 98-3-L).

There have been elevated parameter concentrations in off-site wells 98-1-U and 98-2-U in the shallow aquifer and in the deep aquifer well 98-2-L. All other off-site monitoring wells have had water quality similar to background. Notably, well 98-2-L has had elevated concentrations of most parameters, including sulphate (non-LIP). Elevated concentrations in these wells have been greater than the monitoring wells immediately south of the waste mound. As such, and with a northeast (and northwest in the deeper aquifer) groundwater flow south of the Site

between well nests 98-1 and nests 97-1 and 98-3, the elevated parameter concentrations have been attributed to a non-site related source (e.g., historical landfill, road salt impacts, etc.).

Impacts from the Site extended to the southwest and southeast in the shallow aquifer; however, due to natural attenuation, the impacts did not extend much beyond the waste mound. Given the lack of impact at monitor 98-3-U (only barium, boron, and COD have been marginally elevated), 30 m down-gradient of the property boundary, impacts beyond an acceptable limit off-site were not expected.

Impacts from the Site were restricted vertically to the shallow aquifer due to the competency of the deeper bedrock. Minor non-site impacts were at various perimeter wells (shallow aquifer), including the background well, likely from road salt application on County Road 36. There was a non-site related impact in the monitoring wells adjacent Wilderness Park Road, south of the Site, primarily in the shallow aquifer (i.e., well nests 98-1 and 98-2). A secondary non-site related source was also in the deep aquifer at well 98-2.

4.2.7 Groundwater Compliance Assessment

The Ministry RUC applies to operating waste disposal sites and sites closed post 1986. As the Site closed in 2002, the RUC applies to the Site. To ensure appropriate actions are in place to respond to any potential degradation in groundwater quality beyond an acceptable level, site-specific trigger levels have been developed for the Site. These are the RUC values developed in accordance with Ministry Guideline B-7 (MOEE, 1994a). The Ministry Guideline B-7 states that, in accordance with the appropriate criteria for particular uses, a change in quality of the groundwater on an adjacent property will be accepted only as follows (Ministry Procedure B-7-1):

The quality cannot be degraded by an amount in excess of 50% of the difference between background and the ODWQS for non-health related parameters and in excess of 25% of the difference between background and the ODWQS for health-related parameters. Background is to be the quality of the groundwater prior to any man-made contamination.

The maximum concentration of a particular contaminant that is considered acceptable in the groundwater beneath an adjacent property is calculated in accordance with the following relationship:

	C_{m}	=	$C_b + x (C_r - C_b)$	
Where:	Cm	=	maximum concentration accepted	
	C_{b}	=	background concentration	
	Cr	=	maximum concentration permitted in accordance with the ODWQS	
	X	=	a constant that reduces the contamination to a level that is considered by the Ministry to have a negligible effect on water use. i.e. 0.5 for non-health related parameters 0.25 for health-related parameters.	

The RUC values were calculated using the median value of the background concentration (C_b) from a minimum of the previous five sampling events as required by Ministry Eastern Region Technical Support Section. Where background concentrations were less than the laboratory RDL, the RDL was used as the background concentration. Where the background concentrations exceeded ODWQS, the C_b value was set as the RUC value. The calculated C_m values for the Site were set as the RUC values.

The RUC values were calculated for all parameters listed in Table 1 with an ODWQS criteria. The RUC assessment included the following monitoring wells along the perimeter of the Site: nested wells 97-1, 97-2, and BH16-1. Well nests 00-1 (background) and 98-3 (located 30 m beyond the property boundary) were included for reference. The results indicated that RUC concentrations were met in these monitor wells with the exception of the parameters highlighted in Table 5 and Table 6 and summarized in Embedded Table 7. Parameters listed in bold text are parameters that persistently exceed the RUC criteria.

Shallow Aquifer	RUC Exceedance
00-1-U (Background)	TDS
97-1-U	barium, chloride, iron, manganese, hardness, TDS
97-2-U	barium, chloride, iron, manganese, sodium, alkalinity, hardness, TDS
98-3-U	hardness, TDS
Deep Aquifer	
00-1-M (Background)	none
97-1-M	none
98-3-M	none
BH16-1S	DOC
00-1-L (Background)	iron
97-1-L	none
97-2-L	none
98-3-L	iron, manganese
BH16-1D	none

Embedded Table 7 Groundwater RUC Exceedances

As discussed in Section 4.2.3, elevated concentrations of several parameters were noted at 97-1-U and 97-2-U in 2020. Parameter concentrations that persistently exceed the RUC criteria are non-health related parameters and were at least partially attributed to naturally elevated concentrations as mirrored by elevated concentrations in the background water quality (i.e., TDS) and/or to road salt impacts (i.e., alkalinity, TDS, hardness, chloride, sodium).

All remaining exceedances noted in Embedded Table 7 were naturally occurring, as exhibited by the concentrations at well nest 00-1 or were not persistently elevated and were attributed to natural variations in the water quality.

Given the lack of persistently elevated concentrations which have exceeded the RUC criteria at down-gradient well nests 98-3 and BH16-1, the Site complied with the intent of the RUC (MOEE, 1994a).

4.3 Residential Water Quality

Residential well samples were not collected as a part of the 2020 monitoring program due to the COVID-19 pandemic. Historical residential well sampling data from 2002 to 2010 are included digitally. Water quality data from 2011 to 2019 are summarized in Table 8.

The residential well sample identified as 'Empire' is northwest of Peterborough County Road 36, 75 m up-gradient of the waste mound. Historically, water quality at this well exhibited ODWQS exceedances for TDS and a single elevated concentration of sodium in 2015.

Formerly identified as 95 County Road 36 (WSP, 2017), residential well 68 County Road 36 is 65 m cross-gradient from the waste mound. This well often exhibited elevated TDS concentrations greater than the ODWQS.

There have been no exceedances ODWQS criteria at residential well 515 Riverside Drive, about 1 km southeast and down-gradient of the waste mound.

Three additional residential wells were added to the program in 2017. Residential wells 320 Riverside and 396 Riverside are about 825 and 765 m southeast and down-gradient of the waste mound, respectively. Although only four samples have been collected, no ODWQS exceedances have been reported.

The resident for the well identified as 314 Riverside did not wish to be included in any further monitoring events after October 2017. As such, the well at 130 County Road 36 was permanently added to the monitoring program in 2018 (sampled once before in 2016). Occasional elevated iron concentrations have been reported at this well.

Water quality data at all sampled residential wells were similar to background water quality at the Site (i.e., well nest 00-1). No site related impacts were evident at the residential wells included in the monitoring program in 2019. Furthermore, there were no exceedances of the ODWQS criteria at any of the residential wells sampled in 2019, with the exception of TDS at 68 County Road 36, consistent with historical results.

Although elevated sodium concentrations were not attributed to site impacts and were less than the ODWQS criteria of 200 mg/L, given that the sodium concentrations exceeded 20 mg/L

at a number of the residential wells, the homeowners and local Medical Officer of Health were notified in 2018, as required by the ODWQS (Cambium, 2020). This correspondence was also sent to the Ministry's Peterborough District Office.

4.4 Summary of Landfill Gas Monitoring

Landfill gas monitoring was conducted at the Site in 2020 to assess the potential gas hazard at the Site. The results of the landfill gas monitoring program are documented in the field data sheets (Appendix B) and summarized in Table 9. LFG was not detected at concentrations greater than the instrument detection limit (0.05% methane by volume).

4.5 Adequacy of Monitoring Program

In an effort to have a refined and concise monitoring program at the Site, the existing monitoring program is reviewed annually to determine if it sufficiently monitors impacts at the Site. Following the 2020 assessment, the monitoring program continues to effectively characterize Site conditions, groundwater and any groundwater discharges from the Site, and includes data that relates to background water conditions. At the Site, in whole or in part:

- All monitoring wells were confirmed to be in good condition and secure.
- All fieldwork for groundwater and surface water investigations was done in accordance with the established SOPs (including internal/external QA/QC).
- All groundwater sampling for the monitoring period was successfully completed in accordance with the ECA.
- The Site has an adequate buffer, contaminant attenuation zone (CAZ), and contingency plans in place.
- Design and operational measures, including size and configuration of any CAZ, were adequate to prevent potential human health impacts and impairments of the environment.

Based on the work completed to date, time since closure, and stable conditions, once (spring) annual monitoring and biennial reporting is recommended. As per ECA Condition 17, until

written approval of these recommended changes is received by the District Manager, the monitoring and reporting should continue at the approved frequency.

5.0 Site Operations

This section presents a summary of 2020 operations for the Site. The requirements of ECA Condition 53, related to the Transfer Station operation are addressed as follows:

- Monthly balance of waste received and transferred from the Transfer Station (Section 5.8 and Table 10)
- Summary of any rejected wastes (Section 5.6)
- Summary of any incidents (Section 5.5)
- Summary of complaints received (Section 5.5)
- Statement as to compliance with all ECA Conditions and with the inspection and reporting requirements of the ECA Conditions (Section 5.10)
- Description of any operational changes and/or Transfer Station improvements undertaken and all other operational issues (Section 5.9)

In November 2020, an administrative ECA amendment application was submitted to the Ministry to request operational flexibility related to site layout, storage quantities, documentation requirements, and complaint procedures. The Ministry acknowledged receipt of the application; however, no comments or approval were received as of the date of this report.

5.1 Site Access and Security

The Site is well screened by surrounding forest and thick vegetation. Site access is controlled from Peterborough County Road 36 by a chain linked fence which was in good repair in 2020. The Municipality uses video surveillance equipment to attempt to deter trespassing at the Site. An access pass card is provided to all tax paying residents of the Municipality, where access is only permitted during operational hours and with the presence of a site attendant.

Signage is posted at the gate and the attendant shelter, which lists the hours of operation, emergency contact information, acceptable waste types, site rules, and a warning against illegal dumping.

No changes were made to the operational hours in 2020 and were as followed:

Summer (May 1 to September 30)

Sunday	12:00 PM to 8:00 PM
Tuesday, Friday, Saturday	. 8:00 AM to 4:30 PM

Winter (October 1 to April 30)

Sunday	12:00 PM to 5:00 PM	
Tuesday and Saturday.		
All sites are closed on Christmas Day, I	New Years Day, Family Day, Good Friday, Easter Monday and	
	Canada Day.	

All sites are open on Victoria Day, Civic Holiday, Labour Day, and Thanksgiving Monday and operate on Sunday Hours.

5.2 Site Operation

In 2020, all transfer operations were conducted under the supervision and direction of the site attendant, employed by the Municipality. The site attendant was responsible for ensuring that the safe and orderly operation and maintenance of the Site complied with the requirements of the ECA and the Environmental Protection Act and its Regulations as administered by the Ministry. The site attendant's responsibilities included, but were not limited to the following:

- controlling admission of authorized vehicles with acceptable wastes
- ensuring proper daily litter control
- controlling collection and haulage of materials by a licensed hauler
- maintain a daily record of all operations which are available for inspection by the Ministry

As part of the daily operation of the Site and outlined in the Standard Operating Procedures (MTL, 2020b), the site attendant used the following forms on each operating day, as applicable:

- TS-1 Daily Inspection Form
- TS-2 Issues and Deficiencies Forms
- TS-3 Daily Incoming Waste Form

- TS-4 Tipping Fee Form
- TS-5 Tire Form
- TS-6 Reuse Centre Form
- TS-7 Unaccepted Refused Waste & Entry Form
- TS-8 Complaint Form
- TS-9 Record of Materials Removed Form

5.3 Training

Training was limited due to the COVID-19 pandemic in 2020. A site attendant meeting was held on October 1, 2020 to complete a WHMIS refresher, discuss policies on wearing face masks in the workplace, how to sanitize tools and equipment, the ECA, and the *Transfer Station, Safety, Emergency, and Spills Procedures* (MTL, 2020a). Employees signed an "Acknowledgement and Understanding" form to acknowledge the training.

In 2019, semi-annual meetings are held with site attendants and municipal staff that operate and/or are responsible for transfer station operations. The following items are covered by these meetings and all operating personnel are trained in the following:

- site operating responsibilities
- receiving and recording procedures
- storage, handling, sorting and shipping procedures
- equipment inspection, operation and maintenance procedures
- housekeeping and nuisance control procedures
- site inspection procedures
- occupational health and safety concerns (related to waste)
- complaint response procedures
- procedures to be followed in the event of a spill, fire medical or other emergency

• a review and discussion of the ECA conditions for the Site

In addition to the semi-annual training/meeting, the following training was provided to site attendants in 2019:

- Paintball Gun Training
- Fire Extinguisher Awareness Training
- Lifting Loads Safely
- Workplace Hazardous Materials Information Systems (WHMIS)

A record is kept of all staff who attend the meetings and/or training.

5.4 Site Inspections

The following section discusses observations during site inspections conducted by Cambium and discusses information provided by the Township in 2020.

Daily site inspections of the on-site equipment and facilities were completed by the site attendant, as per ECA Condition 40.

There were no environmental and/or operational problems that were negatively impacting the environment observed by Cambium or the Municipality during site inspections in 2020.

5.4.1 Litter Control

As noted by Cambium staff, the Site was in good condition. Minimal evidence of blown litter was observed during site visits in 2020.

The intent of good housekeeping practices is to protect on-site worker health and safety, and the surrounding environment from nuisance effects. Nuisance effects are minimized by adopting good housekeeping measures as part of the Site operations. Regular housekeeping is essential to control such nuisances as:

- Blowing and loose litter
- Odour

- Rodents and insects
- Scavenging birds

5.4.2 Roads

The access road has sufficient width at the entrance and within the Site to allow unimpeded winter travel and access for emergency and snow removal equipment. The site access roads were observed to be well maintained and graded and were reported to be regularly cleared of snow with a sand mixture applied as needed by the Municipality during the winter months.

5.4.3 Final Cover Integrity

The waste mound was adequately covered and there was minimal evidence of erosion observed from the areas accessed during visits in 2020. Furthermore, the waste mound was well vegetated, which is an effective erosion control measure. No seeps were noted during any site visits conducted in 2020.

5.5 Complaints and Incidents

According to the Municipality, complaints were received from residents in regards to the following:

- Residents being denied entry to the Site as they did not have their access pass
- Residents complaining about site rules

Minor incidents were reported based on inappropriate behavior from the residents caused by the complaints listed above. One health and safety related incident occurred where a resident tripped over a concrete curb. As a result of the incident the Municipality's Chief Administrative Officer requested that the curbs be cut or separated to allow for a walkway.

5.6 Waste Refusal

The Municipality has a Clear Bag Policy. Any garbage bag that has any visible blue box materials, municipal hazardous and special wastes (MHSW), or more than 20% divertible

items (i.e., clothing, organics, waste electrical electronic equipment (WEEE)) is not accepted at the Site. The site attendant is required to fill out the "TS-7 Unaccepted Refused Waste and Entry" form as detailed in the Municipal document *Transfer Station Standard Operating Procedures* (MTL, 2020b). This Municipality keeps these forms on file.

5.7 Monitoring Well Security

As part of the 2020 groundwater monitoring program, monitoring wells listed in Table 1 were inspected and complied with R.R.O. 1990 Regulation 903 - Wells. Refer to Appendix D for photographs of the monitoring wells.

5.8 Materials Summary

The following waste types are collected at the Site; refer to Figure 3 for the collection locations of each material.

- Residential, Industrial, Commercial, and Institutional (IC&I) non-hazardous waste
- Construction and Demolition (C&D) Materials
- Bulky Items
- WEEE
- Limited MHSW
- Leaf and Yard Waste
- Blue Box Recyclables
- Scrap Metal
- Tires
- CFC Appliances

The Municipality reported that only household waste and blue box recyclables were accepted at the Site from March to June. This was a precaution caused by the COVID-19 pandemic.

Restrictions were slowly lifted and additional waste types were once again accepted at the Site.

In 2020, Waste By-Law B2020-031 was established to maintain and regulate the disposal of waste and divertible materials at all transfer stations owned by the Municipality. Minor housekeeping issues were addressed and fees were removed. Fees are now detailed in the Fees and Charges By-Law.

5.8.1 Site Usage

Site usage, as documented by the Municipality, is summarized in Embedded Table 8. Waste collected is transferred to the Peterborough Waste Management Facility. Refer to appended Table 10 for a monthly summary of materials accepted and transferred at the Site.

	-	0		
	2020	2019	2018	2017
Vehicles – Private	31,062	30,229	30,998	34,734
Bags of Garbage	38,864	31,597	31,839	36,363
Waste – Tonnes ¹	398.25	366.64	379.08	403.57
C&D Materials – tonnes ²	59.81	86.52	58.93	-

Embedded Table 8 Summary of Site Usage

Notes:

1. 65 bins transferred to the Peterborough Waste Management Facility.

2. C&D materials tonnages unreported in previous years.

5.8.2 Site Diversion

Embedded Table 8 provides a summary of the materials diverted from the Site in 2020, as provided by the Municipality and the County of Peterborough. In addition, about 181 tonnes of brush was received at the Site in 2020, subsequently chipped and used as cover for rehabilitation on Municipal properties.

Material	tonnes
Blue Box	
Plastic Containers	73.03
Fibres	84.72
MHSW (Empty Oil Containers)	0.25
Scrap Metal and White Goods	32.80
Textiles	0.48
WEEE	14.78
Empty Oil/Anti-freeze Containers	0.25
TOTAL	206.31
Material	Unit
Alcohol Containers	30,250
Tires	722

Embedded Table 9 Summary of Diverted Materials

5.8.3 Municipal Wide Diversion

In addition to the seasonally operated County MHSW Depot, the Site is approved to accept limited MHSW (ECA Conditions 26 and 27), as are various transfer stations in the Municipality including the Buckhorn, Cavendish, and Crystal Lake sites. Embedded Table 10 provides a summary of the limited MHSW accepted at these sites 2020. The quantity of MHSW materials received was less than half compared to 2019 due to COVID-19.

Embedded Table 10 Summary of Limited MHSW Collected - Municipality

MHSW	Municipal Wide tonnes
Batteries	0.81
Florescent Tubes	0.16
Car Batteries	1.20
TOTAL	2.17

In 2020, the annual Environmental Day hosted by the County was cancelled due to the COVID-19 pandemic. Typically, this annual event would allow residents to dispose of the following items: polystyrene, media and car seats, hard cover books, and mattresses.

5.9 Site and Documentation Reviews and Updates

The following documents are maintained by the Municipality, reviewed annually, and updated as required.

- Current Design and Operations Plan consisting of the following and associated supporting documents:
- North Landfill Site Transfer Station, Design, Operation, Maintenance and Closure Report (TSH, 2002)
- Letter from TSH to the Ministry, dated June 19, 2002, with details pertaining to, the volume of waste to be stored, the contingency plan and construction schedule, and documents pertaining to the name change for the Township and the contingency and emergency plan
- Letter and supporting documentation dated October 19, 2006 to the Ministry from TSH providing additional information for the requested addendum to permit the chipping and storage of wood waste at the Transfer Station. The supporting documentation includes Drawing No. 2 Bobcaygeon (North) Landfill Site Proposed Final Contours dated October 19, 2006
- Environmental Compliance Approval application, dated May 10, 2016, and includes the Design and Operations Report, maps, and supporting documentation
- email correspondence from Cambium, providing feedback on updated changes to the MHSW program
- Transfer Station Safety, Emergency and Spills Procedures (MTL, 2020a)
- Transfer Station Standard Operating Procedures (MTL, 2020b)

Specifically,

• No changes were made to the Design and Operations Plan in 2020.

- The *Transfer Station Standard Operating Procedures* were reviewed and updated on October 1, 2020. Minor changes were made to identify the staging area for ashes, changes to the haulers for textiles and blue box recyclables, and the handling of loose waste.
- The Transfer Station Safety, Emergency and Spills Procedures was reviewed on November 26, 2020. The following changes were made: clarification stating that all fires must be reported to the Ministry, contact information for the Spills Action Centre, and an "Acknowledgement and Understanding" sign off page was added. Furthermore, Municipal contact information was updated.

As per the requirements detailed in Condition 53, no improvements to the transfer station were completed by the Municipality in 2020.

5.10 Compliance with Ministry Approval

The Bobcaygeon transfer station was operated in compliance with all ECA conditions in 2020. Furthermore, the Municipality operated the Site in compliance with all required inspection and reporting requirements contained in the ECA.

6.0 Conclusions and Recommendations

Based on the 2020 monitoring program, Cambium provides the following conclusions regarding the Bobcaygeon waste disposal site.

- Results of the groundwater elevation monitoring indicated that the shallow and deep aquifer flowed predominantly to the south-southeast. Components to the southwest from the waste mound and to the northwest/northeast from Wilderness Park Road were also present.
- Consistent with historical results, there was a predominant downward vertical gradient calculated between most monitoring well nests.
- The water quality at the Site is monitored in the shallow (upper) and deep (middle and lower) aquifers. Results indicated that site-related impacts were occurring in the upper bedrock monitors with little to no impacts in the deep bedrock aquifer. The site-related impacts were to the southwest and southeast of the waste mound, with marginal impacts at the closest off-site monitor 98-3-U (30 m down-gradient of the property boundary).
- A non-site related impact was impacting the off-site monitoring wells (98-1 and 98-2) adjacent Wilderness Park Road, south of the Site. Two separate sources were suspected; one in the upper aquifer and one in the deep aquifer at well 98-2-L only.
- Given the lack of persistently elevated concentrations which have exceeded the RUC criteria at down-gradient well nest 98-3 (30 m south of property boundary) and at perimeter well nest BH16-1, the Site complied with the intent of the Reasonable Use Concept (MOEE, 1994a).
- Volatile organic compound analysis was completed at monitoring wells 98-2-U and 98-2-L during the autumn sampling event. All concentrations were less than the RDLs.
- Methane was not detected at concentrations greater than the instrument detection limit (0.05% methane by volume).
- According to Municipal and County records, 398.25 tonnes of waste, 59.81 tonnes of construction and demolition waste, 157.75 tonnes of containers and fibres, and

approximately 48.56 tonnes of various other materials were accepted and transferred offsite. Not included in these tonnages were 181 tonnes of brush, 722 tires, and 30,250 alcohol containers.

• The Site was operated in compliance with all ECA Conditions.

Based on the results of the 2020 monitoring program, Cambium recommends the following:

- Groundwater and residential well monitoring should continue in 2021 as described in the monitoring program, included in Table 1.
- Annual reporting should continue in accordance with ECA Conditions 19 and 53.
- Once (spring) annual monitoring and biennial reporting is recommended and should be implemented following written approval from the District Manager, as per ECA Condition 17 (2).

References

- Cambium. (2018). 2017 Annual Report, Bobcaygeon Waste Disposal Site.
- Cambium. (2019). 2018 Annual Report, Bobcaygeon Waste Disposal Site. Cambium Inc.
- Cambium. (2020). 2019 Annual Monitoring Report, Bobcaygeon Waste Disposal Site.
- CCME. (2011). *Canadian Water Quality Guidelines for the Protection of Aquatic Life.* Winnipeg: Canadian Council of Ministers of the Environment.
- EMMS. (1995). *Bobcaygeon Landfill Report, Preliminary Groundwater Investigation.* Environmental Management & Monitoring Services Inc.
- Government of Canada. (2015). *Canadian Climate Normals or Averages 1981-2010*. Retrieved 2018, from National Climate Data and Information Archive: http://climate.weather.gc.ca/climate_normals/results_1981_2010_e.html?stnID=4287&a utofwd=1
- Government of Canada. (2021). *Historical Data*. Retrieved January 2021, from Past weather and climate: http://climate.weather.gc.ca/historical_data/search_historic_data_e.html
- Hydroterra. (2006). Updated Hydrogeologic Report, 2002 to 2006 Results, Township of Galway-Cavendish and Harvey North Landfill. Hydroterra Limited.
- MOE. (2006). *Technical Support Document for Ontario Drinking Water Quality Standards, Objectives and Guidelines.* Ministry of the Environment.
- MOE. (2010). Monitoring and Reporting for Waste Disposal Sites, Groundwater and Surface Water, Technical Guidance Document. Ministry of the Environment.
- MOEE. (1993). *Guidance Manual for Landfill Sites Receiving Municipal Waste .* Ministry of the Environment and Energy.
- MOEE. (1994a). Incorporation of the Reasonable Use Concept into MOEE Groundwater Management Activities. Ministry of the Environment and Energy.

- MOEE. (1994b). *Water Management: Policies, Guidelines, Provinicial Water Quality Objectives.* Ministry of the Environment and Energy.
- MOEE. (1996). *Guidance on Sampling and Analytical Methods for Use at Contaminated Site in Ontario.* Ministry of the Environment and Energy.
- MOEE. (1998). A Guideline on the Regulatory and Approval Requirements for New or Expanding Landfill Sites. Ministry of the Environment and Energy.
- MTL. (2020a). *Transfer Station Safety, Emergency and Spills Procedures.* Municipality of Trent Lakes.
- MTL. (2020b). Transfer Station Standard Operating Procedures. Muncipality of Trent Lakes.
- TCC. (2014). Trent Assessment Report. Trent Conservation Coalition.
- TSH. (2002). North Landfill Site Closure Plan. Totten Sims Hubicki.
- TSH. (2008). Township of Galway-Cavendish and Harvey North Landfill Site, 2007 Annual Monitoring Report. Totten Sims Hubicki.
- WSP. (2017). 2016 Annual Monitoring Report Bobcaygeon Closed Landfill Site / Transfer Station. WSP Canada Inc.

Glossary of Terms

Active Face/Area

The portion of the landfill facility where waste is currently being deposited, spread and/or, compacted prior to the placement of cover material.

Adverse Environmental Impact

Any direct or indirect undesirable effect on the environment resulting from an emission or discharge that is caused or likely to be caused by human activity.

Annual Report

Report documenting the results of water quality, environmental quality, and operations monitoring for the year, or for a period as prescribed in the Certificate of Approval.

Approved Design and Operations Plan

The design of a landfill site and its facilities which have been submitted along with the application documents for which formal Ministry approval has been issued through the Certificate of Approval.

Approved Site or Facility

A landfill site/facility for which there is an existing and current Certificate of Approval.

Aquifer

A geologic unit (soil or rock) that contains sufficient saturated permeable material to yield measurable quantities of water to wells and springs.

Attenuation

Natural process through which the concentrations of landfill generated contaminants are reduced to safe levels.

Borehole

A hole drilled for soil sampling purposes.

Buffer Area

An area of land situated within the peripheral area surrounding an active filling area, but limited in extent to the property boundary, assigned to provide space for remedial measures, contaminant control measures, and for the reduction or elimination of adverse environmental impact caused by migrating contaminants.

Certificate of Approval

The license or permit issued by the Ministry for the operation of a landfill site. Issued to the owner of the site with conditions of compliance stated therein.

Contaminant

A compound, element, or physical parameter, usually resulting from human activity, or found at elevated concentrations that have or may have a harmful effect on public health or the environment.

Contaminant Migration Path

Route by which a contaminant will move from the site into adjacent properties or the natural environment. Usually a route that offers the least resistance to movement.

Contamination Attenuation Zone

The zone beneath the surface, located beyond the landfill site boundary, where contaminants will be naturally attenuated to predetermined levels. Also, see Reasonable Use Policy.

Contingency Plan

A documented plan detailing a co-ordinated course of action to be followed to control and remediate occurrences such as a fire, explosion, or release of contaminants in an uncontrolled manner that could threaten the environment and public health.

Cover Material

Material approved by the Ministry that is used to cover compacted solid waste. Usually, a soil with suitable characteristics for specific enduse.

Site Development Plan and Operations Report

Development and Operations Plan or Report is a document detailing the planned sequence of activities through the landfill site's active life, the control systems, site facilities and monitoring systems that are necessary. This document is required for obtaining a Certificate of Approval.

Design Capacity

The maximum amount of waste that is planned to be disposed of at a landfill site.

Detection Limit

Concentration under which a parameter cannot be quantitatively measured.

EAA or EA Act

Environmental Assessment Act, Revised Statutes of Ontario, 1990. One of the primary acts of legislation intended to protect, conserve, and wisely manage Ontario's environment through regulating planning and development.

Environmental Compliance Approval

The license or permit issued by the Ministry for the operation of a landfill site. Issued to the owner of the site with conditions of compliance stated therein.

EPA

Environmental Protection Act, Revised Status of Ontario, 1990. EPA is another of the primary pieces of Provincial legislation governing the protection of the natural environment of the Province.

Evapotranspiration

The evaporation of all water from soil, snow, ice, vegetation and other surfaces, including the water absorbed by plants, that is released to the atmosphere as vapour.

Fill Area

The area of a landfill site designed and designated for the disposal of waste.

Final Cover

Soil material or soil in combination with synthetic membranes, overlain by vegetation in a planned landscape, placed over a waste cell that has reached the end of its active life.

Groundwater

Subsurface water that occurs beneath the water table in soils and rocks that are fully saturated.

Hydraulic Conductivity

The rate of flow of water through a cross-section under a specific hydraulic gradient. It is a property of the geologic formation and the fluid, in hydrogeologic applications where the fluid is water (Units of m/day or cm/s).

Hydraulic Gradient

The head drop per unit distance in the direction of flow, the driving force for groundwater flow.

Hydrogeology

The study of subsurface waters and related geologic aspects of surface waters.

Impermeable Fill

Soil material that is placed as filling material that is sufficiently cohesive and fine grained to impede and restrict the flow of water through it.

In situ Testing

Testing done on-site, in the field, of material or naturally occurring substances in their original state.

Landfill Gas

Combustible gas (primarily methane and carbon dioxide) generated by the decomposition of organic waste materials.

Landfill Site

A parcel of land where solid waste is disposed of in or on land for the purposes of waste management.

Leachate

Water or other liquid that has been contaminated by dissolved or suspended particles due to contact with solid waste.

Leachate Breakout

Location where leachate comes to the ground surfaces; a seep or spring.

Limit of Filling

The outermost limit at which waste has been disposed of, or approved or proposed for disposal at a landfill.

Ministry

Ontario Ministry of the Environment, Conservation and Parks.

Monitoring

Regular or spontaneous procedures used to methodically inspect and collect data on the performance of a landfill site relating to environmental quality (i.e., air, leachate, gas, ground or surface water, unsaturated soils, etc.).

Monitoring Well

The constructed unit of casing (riser and screen) installed in a borehole.

Multi-Level Monitoring Well

More than one monitoring well installed at a given test well location.

Native Soil

Soil material occurring naturally in the ground at a location.

Natural Attenuation

Where contaminants are reduced to acceptable concentration levels by natural mechanisms (dilution, absorption onto the soil matrix, etc.), biological action, and chemical interaction.

Occupational Health and Safety Act

The primary act of legislation enacted by Ontario Ministry of Labour to regulate and control the safety in the workplace; also Occupational Health and Safety Act, Revised Statutes of Ontario, 1990.

Odour Control

Minimizing or eliminating the nuisance and undesirable impact of objectionable or unpleasant odours arising from waste disposal operations.

Open Burning

Burning any matter whereby the resultant combustion products are emitted directly to the atmosphere without passing through an adequate stack, duct, or chimney.

Operations Plan

A document detailing the waste disposal operations in a planned, and if necessary, a staged manner, that ensure compliance with regulatory provisions concerning the operations of a landfill site.

Operator (Site Operator)/Attendant

The individual or organization who, through ownership or under contract, manages and operates a landfill site for the purpose of waste disposal.

Owner

A person, persons, organization, or municipal authority who own a landfill facility or part of a landfill facility, and in whose name the Certificate of Approval for the site is issued.

Percolation

The movement of infiltrating water through soil.

Permeability

Often used interchangeable with hydraulic conductivity, but not strictly correct. Permeability is a property of the porous media only. Dependent upon media properties that affect flow, diameter, sphericity, roundness, and packing of the grains.

Piezometer

A well that intersects a confined aquifer.

Provisional Certificate of Approval (Provisional C of A)

Same as Certificate of Approval.

Reasonable Use Policy

A policy developed by the Ministry to stipulate limits to the level of groundwater quality impairment that may be permitted to occur at site property boundaries, to allow the reasonable use of adjacent properties or land without adversely affecting public health and the environment.

Recharge Zone

An area where precipitation or surface run-off infiltrates into the ground and then, through natural percolation enters an aquifer.

Recycling

Sorting, collecting or processing waste materials that can be used as a substitute for the raw materials in a process or activity for the production of (the same or other) goods. For example, the "Blue Box" system, in-plant scrap handling, or raw material recovery systems. Recycling is also the marketing of products made from recycled or recycled materials.

Reduction (of waste or component of 3Rs program)

Those actions, practices, or processes that result in the production or generation of less waste.

Remedial Action

Corrective action taken to clean-up or remedy a spill, an uncontrolled discharge of a contaminant, or a breach in a facility or its operations, in order to minimize the consequent threat to public health and the environment.

Representative Sample

A small portion of soil, water, etc. which can be subjected to testing and analysis, that is expected to yield results that will reliably represent the identical characteristics of the source of the material or of a larger body of material.

Reuse (component of 3Rs program)

The use of an item again in its original form, for a similar purpose as originally intended, or to fulfil a different function.

Run-off

The part of precipitation (rainwater, snowmelt) that flows overland and does not infiltrate the surface material (soil or rock).

Saturated Zone

The zone of a subsurface soil where all voids are filled with water.

Sedimentation

The deposition of fine grained soil in an undesirable location, caused by the scouring, erosion and transportation of earth materials by surface run-off.

Sensitive Land Use

A land use where humans or the natural environment may experience an adverse environmental impact.

Settlement

The subsidence of the top surface and underlying waste of a landfill or waste cell as a result of densification under its own weight.

Site Capacity

The maximum amount of waste that is planned to be disposed (design capacity) or that has been disposed of at a landfill site.

Site Closure

The planned and approved cessation or termination of landfilling activities at a landfill site upon reaching its site capacity.

Site Life

The period from its inception through active period of waste disposal, to the time when a landfill site reaches its' site capacity, when it ceases to receive any further waste, including and up to closure.

Solid Waste

Any waste matter that cannot be characterized by its physical properties as a liquid waste product.

Solid Waste Disposal Site or Facility

A site or facility such as a landfill site where solid waste is disposed of.

Source Separation

The separation of various wastes at their point of generation for the purposes of recycling or further processing.

Standpipe

A monitoring well that intersects the water table aquifer.

Storm water

Run-off that occurs as a direct result of a storm event or thaw.

Storm water Detention

Control of storm water by the construction of impoundments of structures for the purpose of regulating storm water flows during high intensity rainfall events that would otherwise transport excessive amounts of sediment, cause soil erosion or cause flooding.

Stratigraphy

The geologic sub-structuring, usually layered with different distribution, deposition and age.

Surface Run-off (Drainage)

See Run-off.

Surface Water

Water that occurs at the earth's surface (ponds, streams, rivers, lakes, oceans).

Sub-Soil

Soil horizons below the topsoil.

Test hole

A hole drilled for soil sampling purposes.

Topsoil

The uppermost layer of the soil containing appreciable organic materials in mineral soils. Adequate fertility to support plant growth.

Unsaturated Zone

The zone (also vadose zone) in a porous sub-soil, where the voids are not completely water-filled, but contain some air-filled voids. Limited above by the land surface and below by the water table.

Vector

A disease carrier and transmitter; usually an insect or rodent.

voc

Volatile organic compounds are those compounds that will readily volatilize (convert from liquid to gas phase) at conditions normally found in the environment.

Waste

Ashes, garbage, refuse, domestic waste, industrial waste, or municipal refuse and other used products as are designated or interpreted by the provisions of the Environmental Protection Act.

Waste Disposal Site (Facility)

Any land or land covered by water upon, into, in or through which, or building or structure in which, waste is deposited or processed and any machinery or equipment or operation required for the treatment or disposal of waste.

Waste Management System

All facilities, equipment and operations for the complete management of waste, including the collection, handling, transportation, storage, processing and disposal thereof, and may include one or more waste disposal sites.

Water Table

The water level attained in a monitoring well, which screens the surficial unconfined aquifer.

Water Balance

Amounts of water to various components in a system so that water entering the system equals the amount of water contained within and discharged out of a system.

Water Level

The level of water in a well.

Well Casing

The pipe that is used to construct a well.

Well Screen

A filtering device used to keep sediment from entering a well.

Wetlands

Areas where water is at, near or above the land surface long enough to be capable of supporting aquatic or hydrolytic vegetation, and which have soils indicative of wet conditions.

Abbreviations

RFP	Request For Proposal	ha	hectare
Ministry	Ontario Ministry of the Environment, Conservation and Parks	tonne	metric ton
MNRF	Ontario Ministry of Natural Resources and Forestry	t	metric tonne
ECA	Environmental Compliance Approval	μS	microSiemens
EPA	Environmental Protection Act	ODWQS	Ontario Drinking Water Quality Standards
EAA	Environmental Assessment Act	PC of A	Provisional Certificate of Approval
MW	monitoring well	PWQO	Provincial Water Quality Objectives
masl	metres above sea level	тос	Total Organic Carbon
pg	picogram	VOC	Volatile Organic Compound
ng	nanogram	BTU	British Thermal Unit
рд	microgram	°C	temperature in degrees Celsius
g	gram	N/A	not available
kg	kilogram	%	percent
L	Litre	cfm	cubic feet per minute
mg/L	milligrams per litre	ppmdv	part per million by dry volume
mm	millimetre	ppmv	part per million by volume
m	metre	ppm	part per million
km	kilometre	min	minimum
m ³	cubic metre	max	maximum
m²	square metre		

Standard Limitations

Limited Warranty

In performing work on behalf of a client, Cambium relies on its client to provide instructions on the scope of its retainer and, on that basis, Cambium determines the precise nature of the work to be performed. Cambium undertakes all work in accordance with applicable accepted industry practices and standards. Unless required under local laws, other than as expressly stated herein, no other warranties or conditions, either expressed or implied, are made regarding the services, work or reports provided.

Reliance on Materials and Information

The findings and results presented in reports prepared by Cambium are based on the materials and information provided by the client to Cambium and on the facts, conditions and circumstances encountered by Cambium during the performance of the work requested by the client. In formulating its findings and results into a report, Cambium assumes that the information and materials provided by the client or obtained by Cambium from the client or otherwise are factual, accurate and represent a true depiction of the circumstances that exist. Cambium relies on its client to inform Cambium if there are changes to any such information and materials. Cambium does not review, analyze or attempt to verify the accuracy or completeness of the information or materials provided, or circumstances encountered, other than in accordance with applicable accepted industry practice. Cambium will not be responsible for matters arising from incomplete, incorrect or misleading information or from facts or circumstances that are not fully disclosed to or that are concealed from Cambium during the provision of services, work or reports.

Facts, conditions, information and circumstances may vary with time and locations and Cambium's work is based on a review of such matters as they existed at the particular time and location indicated in its reports. No assurance is made by Cambium that the facts, conditions, information, circumstances or any underlying assumptions made by Cambium in connection with the work performed will not change after the work is completed and a report is submitted. If any such changes occur or additional information is obtained, Cambium should be advised and requested to consider if the changes or additional information affect its findings or results.

When preparing reports, Cambium considers applicable legislation, regulations, governmental guidelines and policies to the extent they are within its knowledge, but Cambium is not qualified to advise with respect to legal matters. The presentation of information regarding applicable legislation, regulations, governmental guidelines and policies is for information only and is not intended to and should not be interpreted as constituting a legal opinion concerning the work completed or conditions outlined in a report. All legal matters should be reviewed and considered by an appropriately qualified legal practitioner.

Site Assessments

A site assessment is created using data and information collected during the investigation of a site and based on conditions encountered at the time and particular locations at which fieldwork is conducted. The information, sample results and data collected represent the conditions only at the specific times at which and at those specific locations from which the information, samples and data were obtained and the information, sample results and data may vary at other locations and times. To the extent that Cambium's work or report considers any locations or times other than those from which information, sample results and data was specifically received, the work or report is based on a reasonable extrapolation from such information, sample results and data but the actual conditions encountered may vary from those extrapolations.

Only conditions at the site and locations chosen for study by the client are evaluated; no adjacent or other properties are evaluated unless specifically requested by the client. Any physical or other aspects of the site chosen for study by the client, or any other matter not specifically addressed in a report prepared by Cambium, are beyond the scope of the work performed by Cambium and such matters have not been investigated or addressed.

<u>Reliance</u>

Cambium's services, work and reports may be relied on by the client and its corporate directors and officers, employees, and professional advisors. Cambium is not responsible for the use of its work or reports by any other party, or for the reliance on, or for any decision which is made by any party using the services or work performed by or a report prepared by Cambium without Cambium's express written consent. Any party that relies on services or work performed by Cambium or a report prepared by Cambium without Cambium's express written consent, does so at its own risk. No report of Cambium may be disclosed or referred to in any public document without Cambium's express prior written consent. Cambium specifically disclaims any liability or responsibility to any such party for any loss, damage, expense, fine, penalty or other such thing which may arise or result from the use of any information, recommendation or other matter arising from the services, work or reports provided by Cambium.

Limitation of Liability

Potential liability to the client arising out of the report is limited to the amount of Cambium's professional liability insurance coverage. Cambium shall only be liable for direct damages to the extent caused by Cambium's negligence and/or breach of contract. Cambium shall not be liable for consequential damages.

Personal Liability

The client expressly agrees that Cambium employees shall have no personal liability to the client with respect to a claim, whether in contract, tort and/or other cause of action in law. Furthermore, the client agrees that it will bring no proceedings nor take any action in any court of law against Cambium employees in their personal capacity.

2020 Annual Report, Bobcaygeon Transfer Station 42 Peterborough County Road 36, Trent Lakes The Corporation of the Municipality of Trent Lakes Cambium Reference: 10520-005 April 20, 2021

Appended Figures

N	BOBCAYGEON TRANSFER STATION 42 PETERBOROUGH COUNTY ROAD 36 Trent Lakes, Ontario Municipality of Trent Lakes
	LEGEND
	Upper Monitoring Well Location
	🔗 Benchmark
	254.33 Groundwater Elevation (252.51) April 20, 2020 (November 9, 2020)
	Upper Bedrock Groundwater Contour April 20, 2020
	Upper Bedrock Groundwater Contour November 9, 2020
	Topographic Contour Line
	Site (22 ha.)
	Existing Limit of Waste (1.6 ha.)
	Approved Waste Disposal Area (4 ha.)
	———— Fence
	Gate
	On-site Road
	Approximate Tree Line
	Low Lying Wet Area
	Upper Groundwater Flow Direction April 20, 2020
	Upper Groundwater Flow Direction November 9, 2020
*	Notes: 1. Base mapping features were obtained from the WSP 2016 Landfill Monitoring Report - Figure 3 - Site Plan. 2. Distances on this plan are in metres and can be converted to feet by dividing by 0.3048. Benchmarks: 1. Nail in pole. Elevation 270.58 m.
GRAPHIC SCALE (IN METRES)	P.O. Box 325, 52 Hunter Street East Peterborough, Ontario, K9H 1G5 Tet: (705) 742.7900 Fax: (705) 742.7907 www.camblum-Inc.com UPPER BEDROCK GROUNDWATER CONFIGURATION Project No.: Date: April 2021 10520-005 Rev.:
	Horizontal Scale: Vertical Scale:
1:2,000	Drawn By: Checked By: Figure:

Z	BOBCAYGEON TRANSFER STATION 42 PETERBOROUGH COUNTY ROAD 36 Trent Lakes, Ontario Municipality of Trent Lakes
	LEGEND
	 Middle Monitoring Well Location Benchmark Groundwater Elevation April 20, 2020 (November 9, 2020) Middle Bedrock Groundwater Contour April 20, 2020 Middle Bedrock Groundwater Contour November 9, 2020 Topographic Contour Line Site (22 ha.) Existing Limit of Waste (1.6 ha.)
	Approved Waste Disposal Area
	(4 ha.)
	Fence
	Gate On-site Road
	Approximate Tree Line
	🛓 🚔 🔺 Low Lying Wet Area
	Middle Groundwater Flow Direction April 20, 2020
	Middle Groundwater Flow Direction November 9, 2020
	Notes:
۵.	 Base mapping features were obtained from the WSP 2016 Landfill Monitoring Report - Figure 3-Site Plan. Distances on this plan are in metres and can be converted to feet by dividing by 0.3048. Benchmarks. Nail in pole. Elevation 270.58 m.
	P.O. Box 325, 52 Hunter Street East Peterborough, Ontario, K9H 1G5 Tet: (705) 742,7900 Fax: (705) 742,7907 www.cambium-inc.com
	MIDDLE BEDROCK GROUNDWATER CONFIGURATION
GRAPHIC SCALE (IN METRES) 20 0 20 40 60	Project No.: Date: April 2021 10520-005 Rev.:
	Horizontal Scale: Vertical Scale: 1:2,000 N/A
	Drawn By: Checked By: Figure: 5

N	TR 42 PETER Mu	BOBCA ANSFE BOROUG Trent Lake nicipality o	YGEC R STA H COUI es, Onta of Trent	DN NTION NTY ROAD 36 ario Lakes
		LEG	END	
	+	Lower Moni	toring W	ell Location
	۵	Benchmark		
	254.33 (252.51)	Groundwate April 20, 20	er Elevatio 20 (Nove	on mber 9, 2020)
		Lower Bedro April 20, 20:	ock Groui 20	ndwater Contour
		Lower Bedro November 9	ock Groui), 2020	ndwater Contour
		Topographi	c Contour	Line
		Site (22 ha.)		
		Existing Limi	it of Wast	e (1.6 ha.)
		Approved W (4 ha.)	/aste Dis	oosal Area
		Fence		
		Gate		
		On-site Roa	d	
	\sim	Approximat	e Tree Lir	ne
		Low Lying W	/et Area	
	-	Lower Grou April 20, 202	ndwater 20	Flow Direction
	Ŷ	Lower Grou November 9	ndwater), 2020	Flow Direction
зk	Notes: 1. Base ma Landfill 2. Distance feet by, Benchmarks: 1. Nail in p CAMBIUM	pping features we Wonitoring Report is on this plan are lividing by 0.3048 P.O. Box 32 Peterboro Tel: (705) 742. www. DWER E BORDURI	5, 52 Hunte group of the second secon	rom the WSP 2016 ter Plan. I can be converted to or Street East c, K9H 1G5 (705) 742.7907 re.com
GRAPHIC SCALE	Project No.:	UNFIG	Date:	ON April 2021
20 0 20 40 60		10520-005	Rev.	0
1:2,000	riorizontal Sca	ane: 1:2,000	ventical	ocale: N/A
	Drawn By:	Checker	d By:	Figure: 6
			SNK	0

N N	BOBCAYGEON TRANSFER STATION 42 PETERBOROUGH COUNTY ROAD 36 Trent Lakes, Ontario Municipality of Trent Lakes
	LEGEND
, ,	🔶 Monitoring Well Location
	Benchmark
	254.6 Bedrock Surface Elevation
	Bedrock Surface Elevation Contour
	———— Topographic Contour Line
	Site (22 ha.)
	Existing Limit of Waste (1.6 ha.)
	Approved Waste Disposal Area
	(4 ha.)
	Fence
	Gate
	On-site Road
	Approximate Tree Line
	🔔 🔔 🔺 Low Lying Wet Area
\sim	
	Notes:
	 Dase implying reductives were obtained from the WSP 2016 Landfill Monitoring Report - Figure 3 - Site Plan. Distances on this plan are in metres and can be converted to feat budghter in a 2006
	Benchmarks: 1. Nail in pole. Elevation 270.58 m.
	P.O. Box 325, 52 Hunter Street East Peterborough, Ontario, K9H 1G5
	Tel: (705) 742.7900 Fax: (705) 742.7907 www.cambium-inc.com
	CAMBIUM
	BEDROCK ELEVATION PLAN
GRAPHIC SCALE (IN METRES)	Project No.: Date: April 2021 10520-005 Rev.
	Horizontal Scale: Vertical Scale:
1 : 2,000	1:2,000 N/A Drawn By: Checked By: Figure: _

2020 Annual Report, Bobcaygeon Transfer Station 42 Peterborough County Road 36, Trent Lakes The Corporation of the Municipality of Trent Lakes Cambium Reference: 10520-005 April 20, 2021

Appended Tables

Table Notes

- RDL reported detection limit for the current year
- RUC Reasonable Use Criteria
- CWQG Canadian Water Quality Guidelines for the Protection of Aquatic Life (CCME, 2011)
- ODWQS Ontario Drinking Water Quality Standards, O.Reg. 169/03

PWQO - Water Management, Policies, Guidelines, Provincial Water Quality Objectives (MOEE, 1994b)

PWQO for beryllium, cadmium, copper, and lead depend on hardness

PWQO for aluminum depends on pH and background concentration

NV - No Value

"-" Parameter not analyzed or measured

Unionized ammonia calculated using total ammonia and field data for pH and conductivity

Table 1 - Environmental Monitoring Program

Location	Task	Frequency	Parameters	
GROUNDWATER				
97-1-U, 97-1-M, 97-1-L, 97-2-U, 97-2-L, 97-3, 98-1-U, 98-1-M, 98-1-L, 98-2-U, 98-2-M, 98-2-L, 98-3-U, 98-3-M, 98-3-L, 00-1-U, 00-1-M, 00-1-L, BH16-1, BH16-2 Empire, 515 Riverside,	 Measure groundwater levels Groundwater sampling Field Measurements (pH, 	Twice (Spring and Autumn)	Alkalinity, Ammonia, Barium, Boron, Calcium, Chloride, Conductivity, COD, DOC, Iron, Magnesium, Manganese, Nitrate,	
68 County Rd 36, 396 Riverside, 320 Riverside, 130 County Road 36	temperature, conductivity, dissolved oxygen, ORP)		pH, Sodium, TDS, Sulphate, Hardness	
2 QA/QC Duplicates				
97-3		Twice (Spring and Autumn)	BOD, TSS	
All Existing Monitors	 Measure combustible gas % by volume methane 	Twice (Spring and Autumn)	Methane	
98-2-U, 98-2-L		Once (Autumn)	EPA 624 VOCs	

2020 Annual Report, Bobcaygeon Transfer Station 42 Peterborough County Road 36, Trent Lakes The Corporation of the Municipality of Trent Lakes Cambium Reference: 10520-005

Table 2 - Groundwater Elevation Data

Monitor	97-1-U	97-1-M	97-1-L	97-2-U	97-2-L	97-3	98-1-U	98-1-M	98-1-L	98-2-U	98-2-M	98-2-L	98-3-U	98-3-M	98-3-L	00-1-U	00-1-M	00-1-L	BH16-1S	BH16-1D
Northing Fasting ¹	695759, 4936218	695759, 4936218	695759, 4936218	695493, 4936159	695493, 4936159	695576, 4936201	695549, 4936011	695549, 4936011	695549, 4936011	695453, 4935994	695453, 4935994	695453, 4935994	695749, 4936183	695749, 4936183	695749, 4936183	695692, 4936472	695692, 4936472	695692, 4936472	695658, 4936181	695659, 4936179
Original Ground Elevation (masl)	259.9	259.9	259.9	265.7	265.7	262.9	260.1	260.1	260.1	261.8	261.8	261.8	259.3	259.3	259.3	265.1	265.1	265.1	261.8	261.6
Stick Up (m)	0.73	0.75	0.73	0.95	0.94	1.08	0.89	0.89	0.87	0.92	0.90	0.90	0.85	0.82	0.83	0.85	0.81	0.82	0.67	0.84
Depth (m)	7.24	11.68	17.77	9.37	14.18	5.79	5.80	9.96	14.24	11.02	16.44	23.77	8.24	13.29	18.21	3.46	13.00	19.13	8.00	16.02
Measuring Point (masl)	260.61	260.63	260.60	266.68	266.67	263.96	260.96	260.96	260.94	262.77	262.75	262.75	260.18	260.15	260.17	265.93	265.89	265.90	262.49	262.45
12-May-14	257.01	255.50	255.39	259.12	254.47	259.26	258.72	256.44	258.09	258.57	254.62	257.16	253.70	255.43	254.96	261.72	261.84	262.20	-	-
27-Oct-14	254.57	252.36	252.36	258.85	253.95	259.02	256.10	255.26	253.40	255.17	253.49	253.13	254.61	251.98	251.70	260.62	256.76	259.18	-	-
07-Apr-15	255.41	252.95	252.94	258.09	253.80	259.19	256.79	255.13	253.11	254.16	253.03	255.33	255.39	252.66	251.97	260.99	260.35	255.34	-	-
27-Oct-15	254.15	251.93	251.95	257.97	253.19	258.85	255.81	255.24	253.29	255.12	253.17	252.57	254.23	252.05	251.85	260.39	259.39	255.21	-	-
28-Apr-16	256.54	254.86	254.90	258.37	253.65	-	257.78	256.42	257.30	257.65	253.98	256.58	256.31	254.87	254.70	261.34	261.31	256.72	-	-
21-Oct-16	254.41	252.08	252.10	257.96	253.32	-	255.85	253.85	253.12	255.13	252.49	252.79	254.48	252.03	251.87	260.39	259.35	255.23	-	-
07-Jun-17	256.36	254.37	254.36	258.10	253.74	259.24	256.62	256.56	256.20	256.29	254.38	255.67	256.09	254.01	253.92	263.00	261.13	259.52	257.95	255.93
04-Oct-17	254.65	252.55	252.54	257.98	253.77	258.92	255.98	255.00	253.59	255.16	251.77	253.12	254.59	252.28	252.25	262.99	259.66	253.65	257.13	253.41
28-May-18	255.98	253.88	253.88	258.05	254.03	259.10	256.50	256.44	255.78	255.31	254.37	254.63	255.72	253.54	253.65	262.89	260.68	257.03	257.67	255.14
15-Nov-18	255.33	252.81	252.79	258.08	254.14	259.17	256.53	255.03	253.75	255.30	253.27	253.54	255.25	252.51	251.62	262.82	260.27	255.38	257.44	253.87
15-Apr-19	256.84	255.64	255.44	259.07	259.29	259.61	258.30	255.50	256.93	258.26	253.17	256.93	256.42	254.88	252.79	262.76	262.00	255.10	258.20	257.11
11-Nov-19	255.72	252.97	252.90	258.08	253.86	259.43	256.58	255.53	253.95	255.40	253.92	253.63	255.58	252.72	252.13	262.67	260.28	257.63	257.44	254.00
20-Apr-20	256.51	254.89	254.15	258.61	253.94	259.51	257.07	255.82	257.66	258.07	253.28	256.89	256.21	254.81	253.65	261.81	261.70	255.60	258.04	257.16
09-Nov-20	255.10	252.65	252.60	258.05	253.82	259.34	256.39	255.35	253.72	255.26	253.47	253.32	255.03	252.33	251.69	262.79	260.01	256.73	257.32	253.65

1. Zone 17.

Italicized text represents the upper wells installed in the shallow aquifer. Unformatted text represents the middle wells installed in the deep aquifer.

Shaded test represents the lower wells installed in the deep aquifer.

Table 3 - Monitor Well Information

Monitor Well	Ground Elevation (m) ¹	Measuring Point Elevation (m) ¹	Depth below Meas. Pt. (m) ¹	Depth (mbgs) ²	Diameter (mm)	Stick-Up (m)	Screen Length (m)	Bottom of Screen Elevation (m) ¹	Top of Screen Elevation (m) ¹	Unit Screened
97-1-U	259.9	260.61	7.24	6.51	50.8	0.73	1.5	253.369	254.869	Overburden/Limestone
97-1-M	259.9	260.63	11.68	10.93	50.8	0.754	1.6	248.951	250.551	Limestone
97-1-L	259.9	260.60	17.77	17.04	50.8	0.726	1.6	242.833	244.433	Limestone
97-2-U	265.7	266.68	9.37	8.42	50.8	0.946	1.5	257.308	258.808	Overburden/Limestone
97-2-L	265.7	266.67	14.18	13.24	50.8	0.942	1.5	252.494	253.994	Limestone
97-3	262.9	263.96	5.79	4.71	50.8	1.078	1.2	258.169	259.369	Overburden/Fractured Limestone
98-1-U	260.1	260.96	5.80	4.91	50.8	0.89	1.5	255.162	256.662	Fractured Limestone
98-1-M	260.1	260.96	9.96	9.07	50.8	0.89	1.5	251.001	252.501	Limestone
98-1-L	260.1	260.94	14.24	13.37	50.8	0.87	1.5	246.701	248.201	Limestone
98-2-U	261.8	262.77	11.02	10.10	50.8	0.92	0.5	251.747	252.247	Limestone
98-2-M	261.8	262.75	16.44	15.54	50.8	0.90	1.5	246.308	247.808	Limestone
98-2-L	261.8	262.75	23.77	22.87	50.8	0.90	1.3	238.977	240.277	Limestone
98-3-U	259.3	260.18	8.24	7.39	50.8	0.85	1.5	251.941	253.441	Limestone
98-3-M	259.3	260.15	13.29	12.47	50.8	0.82	1.5	246.862	248.362	Limestone
98-3-L	259.3	260.17	18.21	17.38	50.8	0.83	1.9	241.958	243.858	Limestone/Red Shale
00-1-U	265.1	265.93	3.46	2.61	50.8	0.85	1.5	262.465	263.965	Fractured Limestone
00-1-M	265.1	265.89	13.00	12.19	50.8	0.81	1.5	252.885	254.385	Limestone
00-1-L	265.1	265.90	19.13	18.31	50.8	0.82	1.5	246.767	248.267	Limestone
BH16-1S	261.8	262.49	8.00	7.33	38.1	0.67	1.5	254.49	255.99	Limestone
BH16-1D	261.6	262.45	16.02	15.18	38.1	0.84	3	246.427	249.427	Limestone
Notes:										

1. mbgs means metres below ground surface.

2. Elevations are geodetic.

3. Italicized text represents the upper wells installed in the shallow aquifer.

4. Unformatted text represents the middle wells installed in the deep aquifer.

5. Shaded test represents the lower wells installed in the deep aquifer.

2020 Annual Report, Bobcaygeon Transfer Station 42 Peterborough County Road 36, Trent Lakes The Corporation of the Municipality of Trent Lakes Cambium Reference: 10520-005

Table 4 - Vertical Hydraulic Gradients

Monitor	Difference in Elevation of Bottom of		Vertical Gradients +downwards, -upwards												Unit Screened	
	Screen	12-May-14	27-Oct-14	7-Apr-15	27-Oct-15	28-Apr-16	21-Oct-16	7-Jun-17	4-Oct-17	28-May-18	15-Nov-18	15-Apr-19	11-Nov-19	20-Apr-20	9-Nov-20	
97-1-U	4.42	0.242	0.500	0 557	0.502	0.280	0.527	0.450	0.475	0.475	0.570	0.271	0 633	0.266	0 554	Overburden/Limestone
97-1-M	4.42	0.342	0.500	0.337	0.302	0.300	0.527	0.430	0.475	0.475	0.570	0.271	0.022	0.300	0.004	Limestone
97-1-U	10.54	0 154	0.210	0.234	0.200	0 156	0.210	0 189	0 200	0 100	0.241	0 132	0.267	0.224	0.237	Overburden/Limestone
97-1-L	10.54	0.134	0.210	0.234	0.203	0.150	0.215	0.103	0.200	0.155	0.241	0.152	0.201	0.224	0.237	Limestone
97-1-M	6 1 2	0.018	0.000	0.002	-0.003	-0.007	-0.003	0.001	0.001	-0.0003	0.003	0.032	0.011	0 121	0.008	Limestone
97-1-L	0.12	0.010	0.000	0.002	-0.000	-0.007	-0.000	0.001	0.001	-0.0003	0.000	0.052	0.011	0.121	0.000	Limestone
97-2-U	1.81	0.966	1 0 1 8	0.801	0.003	0.980	0.964	0 904	0.873	0.834	0.817	-0.047	0.875	0.969	0.877	Overburden/Bedrock
97-2-L	4.01	0.300	1.010	0.031	0.335	0.300	0.304	0.304	0.075	0.004	0.017	-0.047	0.075	0.303	0.011	Limestone
98-1-U	4 16	0.548	0 202	0 300	0 137	0 327	0.481	0.015	0.236	0.015	0.361	0.673	0.253	0 301	0.250	Fractured Limestone
98-1-M	4.10	0.040	0.202	0.000	0.157	0.527	0.401	0.015	0.200	0.015	0.001	0.075	0.200	0.001	0.250	Limestone
98-1-U	8.46	0.074	0 319	0.435	0.208	0.057	0 323	0.050	0.283	0.085	0 329	0 162	0 311	-0.070	0.316	Fractured Limestone
98-1-L	0.40	0.074	0.010	0.400	0.230	0.007	0.020	0.000	0.200	0.000	0.525	0.102	0.011	-0.070	0.010	Limestone
98-1-M	4 30	-0.384	0.433	0.470	0.453	-0.205	0 170	0.084	0 328	0 153	0.208	-0 333	0 367	-0.428	0 379	Limestone
98-1-L	4.50	-0.304	0.400	0.470	0.400	-0.205	0.170	0.004	0.520	0.155	0.230	-0.000	0.007	-0.420	0.073	Limestone
98-2-U	5 44	0.726	0.309	0 208	0.359	0.675	0.485	0.351	0.623	0 173	0.373	0.936	0 272	0.880	0.329	Limestone
98-2-M	0.44	0.120	0.000	0.200	0.000	0.010	0.400	0.001	0.020	0.170	0.070	0.000	0.212	0.000	0.020	Limestone
98-2-U	12 77	0 1 1 0	0 160	-0.092	0.200	0.084	0 183	0.049	0 160	0.053	0 138	0 104	0 139	0.092	0 152	Limestone
98-2-L	12.11	0.110	0.100	-0.032	0.200	0.004	0.100	0.043	0.100	0.000	0.150	0.104	0.105	0.032	0.152	Limestone
98-2-M	7 33	-0.346	0.049	-0.31/	0.082	-0 355	-0.041	-0 176	-0.18/	-0.035	-0.037	-0.513	0.040	-0.492	0.021	Limestone
98-2-L	1.00	0.040	0.040	0.014	0.002	0.000	0.041	0.170	0.104	0.000	0.007	0.010	0.040	0.402	0.021	Limestone
98-3-U	5.08	-0.341	0 518	0.538	0 4 2 9	0 284	0.482	0 409	0 455	0 4 2 9	0 539	0 303	0 563	0 275	0.531	Limestone
98-3-M	0.00	0.041	0.010	0.000	0.420	0.204	0.402	0.400	0.400	0.420	0.000	0.000	0.000	0.210	0.001	Limestone
98-3-U	9 98	-0 126	0 291	0.343	0.238	0 161	0.261	0 218	0.235	0.208	0.364	0.364	0.346	0 257	0.335	Limestone
98-3-L	0.00	0.120	0.201	0.040	0.200	0.101	0.201	0.210	0.200	0.200	0.004	0.004	0.040	0.201	0.000	Limestone/Red Shale
98-3-M	4 90	0.096	0.057	0 141	0.041	0.035	0.033	0.019	0.007	-0.022	0 182	0 4 2 7	0 121	0 237	0 131	Limestone
98-3-L	4.00	0.000	0.007	0.141	0.041	0.000	0.000	0.010	0.001	0.022	0.102	0.421	0.121	0.201	0.101	Limestone/Red Shale
00-1-U	9 58	-0.013	0 403	0.067	0 104	0.003	0 109	0 195	0.348	0.231	0.266	0.079	0 249	0.011	0 290	Fractured Limestone
00-1-M	0.00	0.010	0.400	0.001	0.104	0.000	0.100	0.100	0.040	0.201	0.200	0.010	0.240	0.011	0.200	Limestone
00-1-U	15 70	-0.031	0.092	0.360	0.330	0 294	0.329	0 222	0 595	0 373	0 474	0.488	0.321	0.395	0.386	Fractured Limestone
00-1-L	10.70	0.001	0.002	0.000	0.000	0.204	0.020	0.222	0.000	0.070	0.474	0.400	0.021	0.000	0.000	Limestone
00-1-M	6 12	-0.059	-0.396	0.819	0.683	0 750	0.673	0 263	0.982	0 596	0 799	1 127	0 4 3 3	0 997	0.536	Limestone
00-1-L	0.12	-0.000	-0.000	5.013	0.000	0.750	0.075	5.205	0.302	0.000	0.133	1.121	0.400	0.331	0.000	Limestone
BH16-1S	8.06	_	_	_	_	-	_	0 251	0.462	0.314	0 443	0 136	0 4 2 7	0 1 1 0	0.456	Limestone
BH16-1D	0.00	-	-	-	-	-	-	5.201	0.402	0.014	0.440	0.100	0.721	0.110	0.400	Limestone

Notes:

Shaded and negative values indicate an upward vertical gradient.

Positive values indicate a downward vertical gradient.

			RUC	ODWQS	00-1-U									
	Unit	RDL			2011-05-11	2012-05-02	2012-11-28	2013-06-04	2013-12-05	2014-05-12	2014-10-27	2015-04-06	2015-10-27	2016-04-01
Metals														
Barium (Filtered)	µg/L	1	317	1000	80	84	107	77	90	70	112	93	130	77
Boron (Filtered)	µg/L	5	2509	5000	20	15	22	29	25	15	60	19	25	12
Calcium (Filtered)	µg/L	20			130,000	121,000	165,000	128,000	125,000	94,100	140,000	137,000	145,000	113,000
Chloride	µg/L	500	173500	250000	97,000	70,500	225,000	46,300	48,300	38,000	159,000	136,000	166,000	55,200
Iron (Filtered)	µg/L	5	155	300	<100	<10	<10	<10	<10	<10	<10	<10	<10	<10
Manganese (Filtered)	µg/L	1	26	50	-	<2	<2	20	<2	<2	<2	<2	<2	<2
Magnesium (Filtered)	µg/L	20			5,600	3,880	8,720	5,800	3,580	33,200	4,980	5,840	5,950	3,500
Sodium (Filtered)	µg/L	200	128500	200000	65,000	41,000	127,000	54,700	33,200	10,200	83,200	74,800	94,200	31,300
Inorganics														
Alkalinity (as CaCO3)	mg/L	5	400	500	298	299	333	301	338	262	325	321	308	276
Hardness (as CaCO3) (Filtered)	mg/L	1	421	500	-	318	448	344	327	372	370	366	387	297
Solids - Total Dissolved (TDS)	mg/L	3	502	500	548	482	764	486	412	380	674	496	680	390
Solids - Total Suspended (TSS)	mg/L	3			-	126	616	300	51	197	67	213	238	141
Oxygen Demand - Chemical (COD)	mg/L	5			<4	6	<5	<5	<5	9	<5	<5	<5	<5
Organic Carbon - Dissolved (DOC) (Filtered)	mg/L	0.2	3.6	5	1.2	3.3	1.7	2	2.6	4.8	1.7	2.4	1.1	1.3
Oxygen Demand - Biological (BOD)	mg/L	3			-	<5	<5	<5	<5	<5	<5	<5	<5	<5
Sulphate (Filtered)	mg/L	1	259	500	18	14.1	33.1	11.3	12.8	116	21.4	21.9	20.9	12.1
Ammonia	mg/L	0.01			< 0.05	<0.02	<0.02	<0.02	0.03	0.04	<0.02	<0.02	<0.02	<0.02
Nitrate (as N)	mg/L	0.05	3.2	10	1.4	0.68	< 0.05	0.42	0.51	0.13	2.2	1.65	2.51	0.36
Conductivity (lab)	µS/cm	1			910	758	1,290	909	789	745	1,240	1,030	1,150	691
pH (Lab)	-			6.5-8.5	7.85	8.18	8.21	7.79	8.12	7.97	7.65	8.12	7.99	8.02
Field														
DO (Field)	mg/L				-	-	-	-	-	-	-	-	-	7.9
Redox Potential (Field)	mV				-	-	-	-	-	-	-	-	-	-
Temp (Field)	°C				-	-	-	-	-	-	-	-	-	8.7
Conductivity (field)	µS/cm				-	-	-	-	-	-	-	-	-	890
pH (Field)	-			6.5-8.5	-	-	-	-	-	-	-	-	-	7.7

			RUC	ODWQS	00-1-U								
	Unit	RDL			2016-10-01	2017-06-07	2017-10-04	2018-05-28	2018-11-15	2019-04-15	2019-11-11	2020-04-20	2020-11-09
Metals													
Barium (Filtered)	µg/L	1	317	1000	109	76	89	91	117	80	93	68	82
Boron (Filtered)	µg/L	5	2509	5000	21	14	19	18	18	16	15	12	17
Calcium (Filtered)	µg/L	20			134,000	116,000	122,000	120,000	147,000	117,000	129,000	110,000	129,000
Chloride	µg/L	500	173500	250000	134,000	58,100	73,400	78,200	147,000	124,000	155,000	78,300	144,000
Iron (Filtered)	µg/L	5	155	300	<10	<5	7	<5	101	19	21	8	23
Manganese (Filtered)	µg/L	1	26	50	3	<1	1	<1	18	3	1	2	23
Magnesium (Filtered)	µg/L	20			5,080	4,230	4,530	4,540	5,840	3,890	6,220	3,220	4,600
Sodium (Filtered)	µg/L	200	128500	200000	78,700	48,300	51,700	57,000	96,600	57,200	87,900	30,700	49,300
Inorganics													
Alkalinity (as CaCO3)	mg/L	5	400	500	351	283	321	278	314	271	297	260	285
Hardness (as CaCO3) (Filtered)	mg/L	1	421	500	356	307	324	319	392	308	348	288	341
Solids - Total Dissolved (TDS)	mg/L	3	502	500	616	419	503	412	602	516	578	407	580
Solids - Total Suspended (TSS)	mg/L	3			204	-	-	-	-	-	-	-	-
Oxygen Demand - Chemical (COD)	mg/L	5			<5	<5	<5	<5	<5	<5	6	13	<5
Organic Carbon - Dissolved (DOC) (Filtered)	mg/L	0.2	3.6	5	2.6	2.1	5.1	10.8	2.3	1.5	1.3	2.5	0.5
Oxygen Demand - Biological (BOD)	mg/L	3			<5	-	-	-	-	-	-	-	-
Sulphate (Filtered)	mg/L	1	259	500	23.1	13	14	16	21	18	20	16	25
Ammonia	mg/L	0.01			<0.02	<0.01	<0.01	0.01	0.04	0.06	0.03	0.05	0.04
Nitrate (as N)	mg/L	0.05	3.2	10	3.54	0.98	1.25	0.83	1.49	0.67	1.97	0.5	1
Conductivity (lab)	µS/cm	1			1,080	761	914	785	1,120	969	1,080	776	1,080
pH (Lab)	-			6.5-8.5	7.08	7.73	7.77	7.84	7.63	7.71	7.57	7.78	7.7
Field													
DO (Field)	mg/L				8.7	6.08	5.23	7.96	4.22	5.29	4.7	9.81	3.74
Redox Potential (Field)	mV				-	84	165	135	141	177	180	66	106
Temp (Field)	°C				9.4	9	9.4	9	7.7	7	7.7	9.9	9.1
Conductivity (field)	µS/cm				912	1,010	920	870	1,040	820	1,070	510	1,178
pH (Field)	-			6.5-8.5	7.3	7.11	7.05	7.36	6.97	6.94	6.95	7.84	7.13

			RUC	ODWQS	97-1-U									
	Unit	RDL			2011-05-01	2012-05-02	2012-11-29	2013-06-04	2013-12-05	2014-05-12	2014-10-27	2015-04-06	2015-10-28	2016-04-01
Metals						-		-	-	-	-	-		
Barium (Filtered)	µg/L	1	317	1000	150	152	183	160	207	302	268	197	250	263
Boron (Filtered)	µg/L	5	2509	5000	20	18	55	17	59	38	40	50	52	26
Calcium (Filtered)	µg/L	20			120,000	133,000	141,000	136,000	168,000	147,000	162,000	147,000	192,000	154,000
Chloride	µg/L	500	173500	250000	22,000	15,100	7,980	20,300	21,100	39,100	29,600	32,400	19,200	49,000
Iron (Filtered)	µg/L	5	155	300	<100	<10	<10	<10	<10	<10	<10	<10	<10	<10
Manganese (Filtered)	µg/L	1	26	50	-	3	<2	3	<2	3	3	3	<2	2
Magnesium (Filtered)	µg/L	20			5,600	6,660	8,570	6,340	8,360	8,770	8,700	8,590	10,800	7,570
Sodium (Filtered)	µg/L	200	128500	200000	12,000	8,630	6,160	11,400	10,700	39,000	19,000	17,500	19,100	36,000
Inorganics														
Alkalinity (as CaCO3)	mg/L	5	400	500	279	323	350	325	427	416	414	356	445	383
Hardness (as CaCO3) (Filtered)	mg/L	1	421	500	-	360	387	366	454	403	440	402	524	416
Solids - Total Dissolved (TDS)	mg/L	3	502	500	342	416	400	394	572	568	534	412	564	502
Solids - Total Suspended (TSS)	mg/L	3			-	2,120	1,250	1,600	2,230	359	1,340	1,630	769	828
Oxygen Demand - Chemical (COD)	mg/L	5			15	6	<5	<5	16	13	<5	<5	6	<5
Organic Carbon - Dissolved (DOC) (Filtered)	mg/L	0.2	3.6	5	2.1	2.5	2.2	4	2.5	5.4	3.2	2.5	4.3	4.3
Oxygen Demand - Biological (BOD)	mg/L	3			-	<5	<5	<5	<5	<5	<5	<5	<5	<5
Sulphate (Filtered)	mg/L	1	259	500	10	19.9	17.2	20.4	17.4	33.5	23	24.3	22.1	24
Ammonia	mg/L	0.01			0.09	0.05	<0.02	<0.02	0.03	0.04	<0.02	<0.02	<0.02	<0.02
Nitrate (as N)	mg/L	0.05	3.2	10	0.4	1.84	2.64	1.69	1.95	2	2.24	2.54	3.48	2.96
Conductivity (lab)	µS/cm	1			624	632	686	749	886	989	936	790	905	897
pH (Lab)	-			6.5-8.5	7.83	7.95	7.86	7.76	7.62	8.02	7.8	7.99	7.8	7.99
Field														
DO (Field)	mg/L				-	-	-	-	-	-	-	-	-	9.4
Redox Potential (Field)	mV				-	-	-	-	-	-	-	-	-	-
Temp (Field)	°C				-	-	-	-	-	-	-	-	-	11
Conductivity (field)	µS/cm				-	-	-	-	-	-	-	-	-	929
pH (Field)	-			6.5-8.5	-	-	-	-	-	-	-	-	-	7.7

			RUC	ODWQS	97-1-U								
	Unit	RDL			2016-10-01	2017-06-07	2017-10-04	2018-05-28	2018-11-15	2019-04-15	2019-11-11	2020-04-20	2020-11-09
Metals						-			-	-		·	
Barium (Filtered)	µg/L	1	317	1000	270	331	262	241	254	155	260	401	427
Boron (Filtered)	µg/L	5	2509	5000	43	24	54	21	43	15	28	23	59
Calcium (Filtered)	µg/L	20			186,000	167,000	167,000	140,000	162,000	111,000	148,000	244,000	840,000
Chloride	µg/L	500	173500	250000	66,300	179,000	133,000	132,000	107,000	50,500	81,900	176,000	67,500
Iron (Filtered)	µg/L	5	155	300	50	<5	5	<5	<5	<5	<5	744	22
Manganese (Filtered)	µg/L	1	26	50	17	5	1	<1	1	<1	4	162	1,430
Magnesium (Filtered)	µg/L	20			9,790	8,020	9,070	7,340	7,810	6,400	7,590	9,890	13,400
Sodium (Filtered)	µg/L	200	128500	200000	40,300	135,000	76,500	79,600	72,200	28,300	61,300	98,100	45,000
Inorganics													
Alkalinity (as CaCO3)	mg/L	5	400	500	484	383	404	320	370	279	380	386	376
Hardness (as CaCO3) (Filtered)	mg/L	1	421	500	505	450	455	380	437	304	401	651	2,160
Solids - Total Dissolved (TDS)	mg/L	3	502	500	650	800	718	534	590	398	529	715	532
Solids - Total Suspended (TSS)	mg/L	3			2,170	-	-	-	-	-	-	-	-
Oxygen Demand - Chemical (COD)	mg/L	5			<5	48	46	34	7	24	50	11	95
Organic Carbon - Dissolved (DOC) (Filtered)	mg/L	0.2	3.6	5	2.8	3.8	3.9	8.3	3.6	3.5	2.4	3.5	3.1
Oxygen Demand - Biological (BOD)	mg/L	3			<5	-	-	-	-	-	-	-	-
Sulphate (Filtered)	mg/L	1	259	500	31.3	27	25	16	19	11	16	22	23
Ammonia	mg/L	0.01			<0.02	<0.01	0.03	0.03	0.03	0.07	0.04	0.02	0.05
Nitrate (as N)	mg/L	0.05	3.2	10	3.4	2.09	2.75	0.92	1.92	2.42	2.47	1.72	2.02
Conductivity (lab)	µS/cm	1			1,090	1,450	1,310	1,000	1,100	760	992	1,320	998
pH (Lab)	-			6.5-8.5	6.93	7.64	7.68	7.8	7.67	7.76	7.46	7.47	7.62
Field													
DO (Field)	mg/L				8	9.12	9.99	6.75	3.66	9.54	-	7.24	5.37
Redox Potential (Field)	mV				-	77	174	-4	125	153	6	67	255
Temp (Field)	°C				11	12.2	13.7	9.7	9.9	6	8.9	7.4	13.7
Conductivity (field)	µS/cm				848	1,700	1,750	1,120	1,000	630	1,080	1,220	838
pH (Field)	-			6.5-8.5	7.1	7.01	7.17	6.97	7.24	7.22	6.9	7.23	6.81

			RUC	ODWQS	97-2-U	97-2-U	97-2-U	97-2-U	97-2-U	97-2-U	97-2-U	97-2-U	97-2-U	97-2-U
	Unit	RDL			2011-05-01	2012-05-02	2012-11-29	2013-06-04	2013-12-05	2014-05-12	2014-10-27	2015-04-07	2015-10-28	2016-04-01
Metals								·	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
Barium (Filtered)	µg/L	1	317	1000	180	220	290	187	248	158	314	286	342	169
Boron (Filtered)	µg/L	5	2509	5000	50	55	85	45	71	41	107	86	96	38
Calcium (Filtered)	µg/L	20			180,000	175,000	192,000	188,000	159,000	122,000	205,000	215,000	221,000	147,000
Chloride	µg/L	500	173500	250000	160,000	220,000	269,000	202,000	177,000	26,000	296,000	285,000	336,000	184,000
Iron (Filtered)	µg/L	5	155	300	<100	<10	533	<10	239	<10	<10	<10	<10	<10
Manganese (Filtered)	µg/L	1	26	50	-	7	16	5	8	<1	8	5	<2	8
Magnesium (Filtered)	µg/L	20			5,300	5,640	6,060	5,850	5,250	9,900	6,690	7,150	7,430	4,750
Sodium (Filtered)	µg/L	200	128500	200000	100,000	107,000	148,000	116,000	109,000	22,200	128,000	141,000	168,000	93,500
Inorganics														
Alkalinity (as CaCO3)	mg/L	5	400	500	376	395	434	365	421	372	409	436	463	328
Hardness (as CaCO3) (Filtered)	mg/L	1	421	500	-	460	504	494	419	345	539	566	582	387
Solids - Total Dissolved (TDS)	mg/L	3	502	500	778	814	924	774	730	498	1,040	926	1,120	656
Solids - Total Suspended (TSS)	mg/L	3			-	744	74	421	780	890	169	146	244	136
Oxygen Demand - Chemical (COD)	mg/L	5			8	12	<5	<5	5	10	<5	<5	<5	<5
Organic Carbon - Dissolved (DOC) (Filtered)	mg/L	0.2	3.6	5	1.5	2	5.3	3	7	7.5	2	2.5	2.6	1.7
Oxygen Demand - Biological (BOD)	mg/L	3			-	<5	<5	6	<5	<5	<5	<5	<5	<5
Sulphate (Filtered)	mg/L	1	259	500	29	30.5	35.6	29.1	29.9	29.3	33.7	37.3	29.4	23.5
Ammonia	mg/L	0.01			< 0.05	0.04	0.06	<0.02	0.04	0.02	<0.02	<0.02	<0.02	<0.02
Nitrate (as N)	mg/L	0.05	3.2	10	1.5	1.98	< 0.05	1.94	2.5	2.38	2.74	3.23	3.6	2.32
Conductivity (lab)	µS/cm	1			1,280	1,360	1,600	1,420	1,360	865	1,870	1,710	1,930	1,160
pH (Lab)	-			6.5-8.5	7.59	8	7.97	7.64	7.72	8.03	7.42	7.89	7.87	7.94
Field														
DO (Field)	mg/L				-	-	-	-	-	-	-	-	-	9.8
Redox Potential (Field)	mV				-	-	-	-	-	-	-	-	-	-
Temp (Field)	°C				-	-	-	-	-	-	-	-	-	12.1
Conductivity (field)	µS/cm				-	-	-	-	-	-	-	-	-	644
pH (Field)	-			6.5-8.5	-	-	-	-	-	-	-	-	-	8.1

			RUC	ODWQS	97-2-U								
	Unit	RDL			2016-10-01	2017-06-07	2017-10-04	2018-05-28	2018-11-15	2019-04-15	2019-11-11	2020-04-20	2020-11-09
Metals						·				-		-	
Barium (Filtered)	µg/L	1	317	1000	306	179	258	203	326	185	272	155	374
Boron (Filtered)	µg/L	5	2509	5000	102	59	88	52	91	23	83	26	108
Calcium (Filtered)	µg/L	20			208,000	148,000	179,000	162,000	214,000	169,000	178,000	158,000	250,000
Chloride	µg/L	500	173500	250000	302,000	109,000	163,000	183,000	298,000	182,000	302,000	130,000	351,000
Iron (Filtered)	µg/L	5	155	300	798	<5	145	23	22	<5	18	9	815
Manganese (Filtered)	µg/L	1	26	50	30	5	18	8	14	3	12	3	34
Magnesium (Filtered)	µg/L	20			7,020	4,900	6,230	5,640	7,120	4,980	6,600	4,500	7,400
Sodium (Filtered)	µg/L	200	128500	200000	153,000	90,600	107,000	106,000	181,000	74,000	186,000	77,600	198,000
Inorganics													
Alkalinity (as CaCO3)	mg/L	5	400	500	484	361	414	347	424	364	418	340	414
Hardness (as CaCO3) (Filtered)	mg/L	1	421	500	548	391	473	428	564	443	472	413	655
Solids - Total Dissolved (TDS)	mg/L	3	502	500	1,010	627	790	664	1,010	687	970	589	1,070
Solids - Total Suspended (TSS)	mg/L	3			149	-	-	-	-	-	-	-	-
Oxygen Demand - Chemical (COD)	mg/L	5			22	6	<5	<5	14	9	9	<5	<5
Organic Carbon - Dissolved (DOC) (Filtered)	mg/L	0.2	3.6	5	3.1	15.8	4.2	15.6	2.6	1.5	1.2	3.3	0.3
Oxygen Demand - Biological (BOD)	mg/L	3			<5	-	-	-	-	-	-	-	-
Sulphate (Filtered)	mg/L	1	259	500	33.1	19	19	20	28	16	27	18	28
Ammonia	mg/L	0.01			0.08	<0.01	0.03	0.01	0.1	0.06	0.03	0.01	0.22
Nitrate (as N)	mg/L	0.05	3.2	10	3.38	1.8	2.62	1.79	3.28	1.38	3.02	1.6	3.06
Conductivity (lab)	µS/cm	1			1,820	1,140	1,440	1,230	1,840	1,270	1,770	1,100	1,940
pH (Lab)	-			6.5-8.5	7.1	7.35	7.63	7.7	7.57	7.65	7.59	7.59	7.58
Field													
DO (Field)	mg/L				7.34	8.39	7.07	9.55	7.72	5.41	9.83	6.47	2.94
Redox Potential (Field)	mV				-	11	126	42	154	169	136	122	103
Temp (Field)	°C				9.7	11.9	12.7	18.7	8	7	6.6	10.3	9.8
Conductivity (field)	µS/cm				1,537	1,280	1,330	1,280	1,500	1,050	1,630	940	1,926
pH (Field)	-			6.5-8.5	6.9	6.9	6.93	7.06	7.17	7.14	7	7.2	6.76

			RUC	ODWQS	97-3	97-3	97-3	97-3	97-3	97-3	97-3	97-3	97-3	97-3
	Unit	RDL			2011-05-01	2012-05-02	2012-11-29	2013-06-04	2013-12-05	2014-05-12	2014-10-27	2015-04-06	2015-10-27	2017-06-07
Metals						-	-	-	-	·	-	·	-	
Barium (Filtered)	µg/L	1	317	1000	310	322	345	361	394	316	342	275	350	388
Boron (Filtered)	µg/L	5	2509	5000	430	397	538	602	535	543	655	435	554	721
Calcium (Filtered)	µg/L	20			210,000	207,000	230,000	247,000	197,000	188,000	210,000	198,000	205,000	213,000
Chloride	µg/L	500	173500	250000	180,000	181,000	154,000	208,000	181,000	174,000	154,000	103,000	80,200	119,000
Iron (Filtered)	µg/L	5	155	300	6,300	4,670	6,210	10,500	12,300	8,550	13,200	1,310	4,840	5,710
Manganese (Filtered)	µg/L	1	26	50	-	596	630	652	625	652	614	342	503	1,110
Magnesium (Filtered)	µg/L	20			18,000	17,400	19,200	20,900	19,100	18,800	20,800	16,200	16,900	23,600
Sodium (Filtered)	µg/L	200	128500	200000	120,000	104,000	103,000	134,000	126,000	111,000	105,000	72,600	68,900	103,000
Inorganics														
Alkalinity (as CaCO3)	mg/L	5	400	500	573	612	606	622	694	607	657	580	637	751
Hardness (as CaCO3) (Filtered)	mg/L	1	421	500	-	589	653	703	571	547	610	561	581	629
Solids - Total Dissolved (TDS)	mg/L	3	502	500	1,040	944	892	1,420	1,050	940	674	768	786	1,040
Solids - Total Suspended (TSS)	mg/L	3			-	7,990	1,910	7,630	2,250	369	274	195	314	290
Oxygen Demand - Chemical (COD)	mg/L	5			35	32	29	26	44	32	35	24	16	42
Organic Carbon - Dissolved (DOC) (Filtered)	mg/L	0.2	3.6	5	8.4	10.3	25.3	12	21.2	17.1	13.4	10.1	10.8	12.5
Oxygen Demand - Biological (BOD)	mg/L	3			-	<5	<5	<5	<5	<5	<5	<5	<5	3
Sulphate (Filtered)	mg/L	1	259	500	43	44.2	54.4	49	43.7	46.8	57.7	49.7	39	34
Ammonia	mg/L	0.01			16	12.8	12.9	12.9	20.4	15.3	15.7	8	11.6	25.8
Nitrate (as N)	mg/L	0.05	3.2	10	0.2	1.06	< 0.05	<0.5	< 0.5	< 0.5	<0.25	1.78	< 0.25	< 0.05
Conductivity (lab)	µS/cm	1			1,710	1,620	1,510	1,900	1,900	1,760	1,870	1,410	1,450	1,890
pH (Lab)	-			6.5-8.5	7.23	7.85	7.92	7.51	7.43	7.9	7.22	7.94	7.84	7.01
Field														
DO (Field)	mg/L				-	-	-	-	-	-	-	-	-	2.98
Redox Potential (Field)	mV				-	-	-	-	-	-	-	-	-	53
Temp (Field)	°C				-	-	-	-	-	-	-	-	-	12.1
Conductivity (field)	µS/cm				-	-	-	-	-	-	-	-	-	2,100
pH (Field)	-			6.5-8.5	-	-	-	-	-	-	-	-	-	6.64

			RUC	ODWQS	97-3	97-3	97-3	97-3	97-3	97-3	97-3
	Unit	RDL			2017-10-04	2018-05-28	2018-11-15	2019-04-15	2019-11-11	2020-04-20	2020-11-09
Metals											
Barium (Filtered)	µg/L	1	317	1000	446	391	392	405	401	399	339
Boron (Filtered)	µg/L	5	2509	5000	1,020	604	732	536	864	657	540
Calcium (Filtered)	µg/L	20			213,000	218,000	225,000	214,000	201,000	225,000	226,000
Chloride	µg/L	500	173500	250000	120,000	172,000	145,000	337,000	175,000	159,000	30,200
Iron (Filtered)	µg/L	5	155	300	14,400	2,800	6,130	1,220	8,590	4,580	5,850
Manganese (Filtered)	µg/L	1	26	50	813	902	689	623	826	856	661
Magnesium (Filtered)	µg/L	20			27,000	22,100	22,500	22,200	24,200	22,600	17,600
Sodium (Filtered)	µg/L	200	128500	200000	117,000	120,000	118,000	152,000	131,000	112,000	43,100
Inorganics											
Alkalinity (as CaCO3)	mg/L	5	400	500	795	663	680	582	728	635	570
Hardness (as CaCO3) (Filtered)	mg/L	1	421	500	643	636	655	626	602	655	637
Solids - Total Dissolved (TDS)	mg/L	3	502	500	1,080	966	988	1,250	1,070	958	677
Solids - Total Suspended (TSS)	mg/L	3			110	200	8,000	90	110	24	18
Oxygen Demand - Chemical (COD)	mg/L	5			57	36	229	43	66	34	7
Organic Carbon - Dissolved (DOC) (Filtered)	mg/L	0.2	3.6	5	15.6	13.9	13.1	6.7	10.1	9.4	7.4
Oxygen Demand - Biological (BOD)	mg/L	3			-	2	7	<3	<3	<3	<3
Sulphate (Filtered)	mg/L	1	259	500	34	35	35	32	35	39	22
Ammonia	mg/L	0.01			30.1	18.6	23.6	26.3	35.2	22.8	14.4
Nitrate (as N)	mg/L	0.05	3.2	10	< 0.05	< 0.05	< 0.05	0.32	< 0.05	< 0.05	0.09
Conductivity (lab)	µS/cm	1			1,960	1,760	1,800	2,260	1,940	1,750	1,250
pH (Lab)	-			6.5-8.5	7.2	7.76	7.38	7.4	7.48	7.33	7.12
Field											
DO (Field)	mg/L				5.93	3.41	0.37	2.37	5.27	3.52	2.12
Redox Potential (Field)	mV				187	54	169	196	164	156	98
Temp (Field)	°C				15.9	14	7.7	7	7.6	9.7	13.7
Conductivity (field)	µS/cm				1,750	1,790	1,390	1,590	1,820	1,150	1,343
pH (Field)	-			6.5-8.5	6.83	6.71	6.88	6.8	6.57	6.86	6.64

			RUC	ODWQS	98-1-U	98-1-U	98-1-U	98-1-U	98-1-U	98-1-U	98-1-U	98-1-U	98-1-U	98-1-U
	Unit	RDL			2011-05-01	2012-05-04	2012-11-28	2013-06-04	2013-12-05	2014-05-12	2014-10-27	2015-04-07	2015-10-29	2016-04-01
Metals						-							· · · · · · · · · · · · · · · · · · ·	
Barium (Filtered)	µg/L	1	317	1000	120	141	160	136	143	171	216	124	-	175
Boron (Filtered)	µg/L	5	2509	5000	150	88	140	148	130	164	249	107	-	137
Calcium (Filtered)	µg/L	20			150,000	166,000	178,000	165,000	148,000	156,000	226,000	152,000	270,000	191,000
Chloride	µg/L	500	173500	250000	7,000 - 8,000	55,000	6,660	13,600	6,170	102,000	50,900	15,000	128,000	103,000
Iron (Filtered)	µg/L	5	155	300	<100	<10	<10	<10	<10	<10	<10	<10	-	<10
Manganese (Filtered)	µg/L	1	26	50	-	<2	<2	<2	<2	<2	<2	<2	-	8
Magnesium (Filtered)	µg/L	20			9,600 - 9,800	8,200	11,600	10,400	10,100	8,770	13,900	9,190	11,900	9,520
Sodium (Filtered)	µg/L	200	128500	200000	8,500 - 8,900	34,900	7,050	11,700	6,270	60,100	27,400	11,900	31,900	58,200
Inorganics														
Alkalinity (as CaCO3)	mg/L	5	400	500	361 - 363	460	462	397	419	407	534	393	502	445
Hardness (as CaCO3) (Filtered)	mg/L	1	421	500	-	448	492	455	411	426	622	417	723	516
Solids - Total Dissolved (TDS)	mg/L	3	502	500	476 - 478	592	534	480	438	670	808	442	938	652
Solids - Total Suspended (TSS)	mg/L	3			-	143	81	26	21	20	28	54	28	26
Oxygen Demand - Chemical (COD)	mg/L	5			6 - 7	<5	<5	<5	9	11	<5	<5	8	8
Organic Carbon - Dissolved (DOC) (Filtered)	mg/L	0.2	3.6	5	2.1 - 2.2	3	4.7	3	7.8	4.7	4.2	2.7	4.4	3.6
Oxygen Demand - Biological (BOD)	mg/L	3			-	<5	<5	<5	<5	<5	<5	<5	<5	<5
Sulphate (Filtered)	mg/L	1	259	500	38 - 42	34.5	38.5	51.8	40.3	57.1	89	34.5	65.2	57.7
Ammonia	mg/L	0.01			< 0.05	<0.02	<0.02	<0.02	<0.02	0.67	<0.02	<0.02	0.03	0.52
Nitrate (as N)	mg/L	0.05	3.2	10	0.7 - 0.74	1.06	< 0.05	0.81	0.57	3.53	3.84	1.13	2.42	3.24
Conductivity (lab)	µS/cm	1			776 - 790	996	878	884	821	1,210	1,380	809	1,400	1,220
pH (Lab)	-			6.5-8.5	7.67 - 7.86	7.79	8.05	7.61	7.86	7.96	7.1	8.07	8.01	7.92
Field														
DO (Field)	mg/L				-	-	-	-	-	-	-	-	-	6.8
Redox Potential (Field)	mV				-	-	-	-	-	-	-	-	-	-
Temp (Field)	°C				-	-	-	-	-	-	-	-	-	8
Conductivity (field)	µS/cm				-	-	-	-	-	-	-	-	-	1,235
pH (Field)	-			6.5-8.5	-	-	-	-	-	-	-	-	-	7.4

			RUC	ODWQS	98-1-U	98-1-U	98-1-U	98-1-U	98-1-U	98-1-U	98-1-U	98-1-U	98-1-U
	Unit	RDL			2016-10-01	2017-06-07	2017-10-04	2018-05-28	2018-11-15	2019-04-15	2019-11-11	2020-04-20	2020-11-09
Metals						-		·	· · · · · · · · · · · · · · · · · · ·	-		-	
Barium (Filtered)	µg/L	1	317	1000	213	128	233	146	207	155	173	203	237
Boron (Filtered)	µg/L	5	2509	5000	199	139	291	154	173	119	181	206	211
Calcium (Filtered)	µg/L	20			230,000	149,000	231,000	148,000	209,000	175,000	170,000	194,000	239,000
Chloride	µg/L	500	173500	250000	63,800	12,900	28,500	34,000	29,200	121,000	22,600	80,600	26,700
Iron (Filtered)	µg/L	5	155	300	54	<5	11	12	<5	<5	<5	96	<5
Manganese (Filtered)	µg/L	1	26	50	5	1	2	1	<1	<1	<1	23	1
Magnesium (Filtered)	µg/L	20			11,800	8,640	14,800	9,870	12,400	8,300	11,700	10,500	13,200
Sodium (Filtered)	µg/L	200	128500	200000	37,200	14,800	21,800	24,100	19,400	49,400	20,400	61,600	19,600
Inorganics													
Alkalinity (as CaCO3)	mg/L	5	400	500	586	368	540	372	483	372	432	418	482
Hardness (as CaCO3) (Filtered)	mg/L	1	421	500	623	408	638	411	573	472	473	528	652
Solids - Total Dissolved (TDS)	mg/L	3	502	500	778	455	701	462	596	641	528	620	600
Solids - Total Suspended (TSS)	mg/L	3			48	-	-	-	-	-	-	-	-
Oxygen Demand - Chemical (COD)	mg/L	5			<5	11	6	<5	12	19	13	12	<5
Organic Carbon - Dissolved (DOC) (Filtered)	mg/L	0.2	3.6	5	4.4	8.8	15.1	12.9	6.4	4.4	4.7	4.9	3.5
Oxygen Demand - Biological (BOD)	mg/L	3			<5	-	-	-	-	-	-	-	-
Sulphate (Filtered)	mg/L	1	259	500	77.7	36	84	40	43	34	49	44	48
Ammonia	mg/L	0.01			0.02	0.08	0.09	0.1	0.02	0.07	0.03	1.52	0.01
Nitrate (as N)	mg/L	0.05	3.2	10	2.61	1.88	3.64	2.05	2.49	2.75	2.68	3.35	3.12
Conductivity (lab)	µS/cm	1			1,310	828	1,270	874	1,110	1,190	990	1,150	117
pH (Lab)	-			6.5-8.5	6.88	7.35	7.12	7.72	7.48	7.6	7.41	7.41	7.09
Field													
DO (Field)	mg/L				4.7	6.48	2.71	9	3.73	2.48	4.7	1.91	4.42
Redox Potential (Field)	mV				-	37	131	9	128	156	104	68	261
Temp (Field)	°C				10	16.6	12.9	13.7	9	5	8.4	8.1	10.4
Conductivity (field)	µS/cm				1,104	980	1,210	930	990	980	990	730	890
pH (Field)	-			6.5-8.5	7.2	6.62	6.57	7.02	6.95	7.05	7.06	6.84	6.69

			RUC	ODWQS	98-2-U	98-2-U								
	Unit	RDL			2011-05-01	2012-05-01	2012-11-01	2013-06-04	2013-12-05	2014-05-12	2014-10-27	2015-04-07	2015-10-27	2016-04-01
Metals						·				·		·	· · · · · · · · · · · · · · · · · · ·	
Barium (Filtered)	µg/L	1	317	1000	90	77	102	89	88	98	111	105	105	94
Boron (Filtered)	µg/L	5	2509	5000	230	194	266	226	176	64	214	198	198	99
Calcium (Filtered)	µg/L	20			160,000	155,000	176,000	184,000	152,000	119,000	180,000	198,000	189,000	156,000
Chloride	µg/L	500	173500	250000	81,000	91,800	96,800	90,900	81,700	90,600	102,000	117,000	111,000	115,000
Iron (Filtered)	µg/L	5	155	300	1,000	43	<10	210	<10	<10	793	<10	<10	<10
Manganese (Filtered)	µg/L	1	26	50	-	18	41	18	17	2	63	3	4	3
Magnesium (Filtered)	µg/L	20			16,000	15,800	16,800	18,900	14,600	7,360	15,600	15,600	15,600	9,500
Sodium (Filtered)	µg/L	200	128500	200000	64,000	63,200	61,200	64,200	54,800	61,600	66,600	68,400	72,900	68,700
Inorganics														
Alkalinity (as CaCO3)	mg/L	5	400	500	400	452	467	444	420	325	445	472	461	395
Hardness (as CaCO3) (Filtered)	mg/L	1	421	500	-	452	509	537	440	327	514	559	536	429
Solids - Total Dissolved (TDS)	mg/L	3	502	500	688	652	724	646	596	672	696	726	772	762
Solids - Total Suspended (TSS)	mg/L	3			-	666	95	1,210	704	1,460	994	502	204	836
Oxygen Demand - Chemical (COD)	mg/L	5			13	6	<5	9	5	<5	23	<5	<5	<5
Organic Carbon - Dissolved (DOC) (Filtered)	mg/L	0.2	3.6	5	1.9	2.7	5.6	2	2.7	6.8	2.4	2.2	1.3	2.1
Oxygen Demand - Biological (BOD)	mg/L	3			-	<5	<5	9	<5	<5	<5	<5	<5	<5
Sulphate (Filtered)	mg/L	1	259	500	60	72.5	80.3	78.5	67.9	25.4	85.9	69.7	65.8	39.8
Ammonia	mg/L	0.01			0.07	< 0.02	0.07	0.02	0.11	0.03	0.2	<0.02	<0.02	<0.02
Nitrate (as N)	mg/L	0.05	3.2	10	0.7	0.85	<0.05	0.52	0.48	1.58	0.73	2.42	2.31	2.09
Conductivity (lab)	µS/cm	1			1,110	1,140	1,200	1,270	1,110	965	1,360	1,300	1,280	1,110
pH (Lab)	-			6.5-8.5	7.46	7.93	7.99	7.62	7.63	7.81	7.4	7.86	7.92	7.95
Field														
DO (Field)	mg/L				-	-	-	-	-	-	-	-	-	6.8
Redox Potential (Field)	mV				-	-	-	-	-	-	-	-	-	-
Temp (Field)	l°C				-	-	-	-	-	-	-	-	-	9.9
Conductivity (field)	µS/cm				-	-	-	-	-	-	-	-	-	1,206
pH (Field)	-			6.5-8.5	-	-	-	-	-	-	-	-	-	7.2

			RUC	ODWQS	98-2-U								
	Unit	RDL			2016-10-01	2017-06-07	2017-10-04	2018-05-28	2018-11-15	2019-04-15	2019-11-11	2020-04-20	2020-11-09
Metals							·		-	·		·	
Barium (Filtered)	µg/L	1	317	1000	91	137	101	104	102	124	104	144	112
Boron (Filtered)	µg/L	5	2509	5000	188	155	208	227	196	115	179	76	189
Calcium (Filtered)	µg/L	20			174,000	183,000	171,000	184,000	181,000	175,000	178,000	176,000	191,000
Chloride	µg/L	500	173500	250000	103,000	91,500	80,000	107,000	97,800	169,000	130,000	93,900	101,000
Iron (Filtered)	µg/L	5	155	300	<10	<5	<5	<5	<5	<5	<5	867	10
Manganese (Filtered)	µg/L	1	26	50	7	5	4	9	2	2	23	79	1
Magnesium (Filtered)	µg/L	20			14,500	10,900	16,200	18,600	16,400	11,200	16,600	7,920	15,600
Sodium (Filtered)	µg/L	200	128500	200000	65,400	78,200	62,800	72,800	69,800	84,300	78,600	65,800	70,100
Inorganics													
Alkalinity (as CaCO3)	mg/L	5	400	500	484	455	442	444	427	363	423	325	399
Hardness (as CaCO3) (Filtered)	mg/L	1	421	500	494	502	494	536	520	484	513	473	542
Solids - Total Dissolved (TDS)	mg/L	3	502	500	672	705	683	658	670	715	705	505	643
Solids - Total Suspended (TSS)	mg/L	3			420	-	-	-	-	-	-	-	-
Oxygen Demand - Chemical (COD)	mg/L	5			<5	46	36	<5	30	11	260	8	<5
Organic Carbon - Dissolved (DOC) (Filtered)	mg/L	0.2	3.6	5	4.2	3.7	5.7	12.3	4	2.8	2	2	0.8
Oxygen Demand - Biological (BOD)	mg/L	3			<5	-	-	-	-	-	-	-	-
Sulphate (Filtered)	mg/L	1	259	500	65.7	43	52	64	64	32	66	27	62
Ammonia	mg/L	0.01			<0.02	0.05	0.02	0.03	0.04	0.05	0.05	0.03	<0.01
Nitrate (as N)	mg/L	0.05	3.2	10	2.12	2.75	1.67	1.49	2.06	1.83	1.34	1.36	1.11
Conductivity (lab)	µS/cm	1			1,220	1,280	1,240	1,220	1,240	1,320	1,300	950	1,190
pH (Lab)	-			6.5-8.5	6.9	7.24	7.64	7.66	7.56	7.66	7.48	7.57	7.38
Field													
DO (Field)	mg/L				5	3.32	6.54	6.82	6.14	5.01	3.95	6.72	4.75
Redox Potential (Field)	mV				-	34	124	37	136	155	118	75	247
Temp (Field)	°C				9.6	17.4	13.4	14.4	7.8	8	7.3	8.1	9.3
Conductivity (field)	µS/cm				1,030	1,440	1,160	1,200	1,120	1,020	1,220	740	888
pH (Field)	-			6.5-8.5	6.8	6.5	6.98	7.03	7.21	7	6.92	7.04	6.93

			RUC	ODWQS	98-3-U									
	Unit	RDL			2011-05-11	2012-05-02	2012-11-12	2013-06-04	2013-12-05	2014-05-12	2014-10-27	2015-04-07	2015-10-28	2016-04-01
Metals						-	·		-		·			
Barium (Filtered)	µg/L	1	317	1000	98	134	141	123	169	139	167	123	171	40
Boron (Filtered)	µg/L	5	2509	5000	30	66	92	46	52	34	129	67	92	239
Calcium (Filtered)	µg/L	20			110,000	116,000	127,000	116,000	145,000	130,000	140,000	113,000	141,000	63,800
Chloride	µg/L	500	173500	250000	18,000	10,600	11,700	15,300	23,900	112,000	19,600	13,400	18,700	11,500
Iron (Filtered)	µg/L	5	155	300	<100	<10	15	<10	<10	<10	<10	<10	<10	20
Manganese (Filtered)	µg/L	1	26	50	-	<2	38	46	<2	11	12	<2	<2	19
Magnesium (Filtered)	µg/L	20			6,800	7,900	8,390	8,710	8,890	4,170	9,290	7,610	9,110	26,900
Sodium (Filtered)	µg/L	200	128500	200000	9,300	5,920	5,460	8,480	9,090	71,900	13,800	7,530	11,500	12,400
Inorganics														
Alkalinity (as CaCO3)	mg/L	5	400	500	274	293	323	296	403	311	356	283	346	207
Hardness (as CaCO3) (Filtered)	mg/L	1	421	500	-	322	352	326	399	342	388	313	390	270
Solids - Total Dissolved (TDS)	mg/L	3	502	500	382	384	360	370	456	490	472	324	434	326
Solids - Total Suspended (TSS)	mg/L	3			-	360	359	5,200	348	64	146	608	458	87
Oxygen Demand - Chemical (COD)	mg/L	5			<4	7	<5	<5	6	7	<5	<5	<5	<5
Organic Carbon - Dissolved (DOC) (Filtered)	mg/L	0.2	3.6	5	1.6	2.5	3.8	2	2.8	2.1	1.9	1.8	1.7	0.8
Oxygen Demand - Biological (BOD)	mg/L	3			-	<5	<5	<5	<5	<5	<5	<5	<5	<5
Sulphate (Filtered)	mg/L	1	259	500	13	24.1	16.9	19.6	17.4	21.1	23.3	21.6	19.8	86.2
Ammonia	mg/L	0.01			< 0.05	<0.02	0.18	<0.02	0.02	< 0.02	0.15	< 0.02	<0.02	0.06
Nitrate (as N)	mg/L	0.05	3.2	10	0.6	3.42	1.76	2.54	2.96	1.32	2.47	1.99	1.76	<0.25
Conductivity (lab)	µS/cm	1			597	607	654	679	837	988	842	611	745	570
pH (Lab)	-			6.5-8.5	7.79	8.04	8.01	7.7	7.84	7.92	7.83	8.19	8.03	8.14
Field														
DO (Field)	mg/L				-	-	-	-	-	-	-	-	-	5.6
Redox Potential (Field)	mV				-	-	-	-	-	-	-	-	-	-
Temp (Field)	°C				-	-	-	-	-	-	-	-	-	8.1
Conductivity (field)	µS/cm				-	-	-	-	-	-	-	-	-	990
pH (Field)	-			6.5-8.5	-	-	-	-	-	-	-	-	-	7.4

			RUC	ODWQS	98-3-U								
	Unit	RDL			2016-10-01	2017-06-07	2017-10-04	2018-05-28	2018-11-15	2019-04-15	2019-11-11	2020-04-20	2020-11-09
Metals						-	-		-	-		-	
Barium (Filtered)	µg/L	1	317	1000	169	179	167	219	140	76	131	235	170
Boron (Filtered)	µg/L	5	2509	5000	117	25	109	34	65	20	51	28	80
Calcium (Filtered)	µg/L	20			142,000	158,000	143,000	182,000	126,000	81,300	122,000	202,000	151,000
Chloride	µg/L	500	173500	250000	22,500	76,200	34,900	147,000	24,600	40,000	33,400	163,000	30,200
Iron (Filtered)	µg/L	5	155	300	<10	<5	5	<5	<5	<5	6	<5	<5
Manganese (Filtered)	µg/L	1	26	50	6	144	1	142	<1	<1	4	3	1
Magnesium (Filtered)	µg/L	20			8,620	8,490	9,050	10,700	7,270	4,730	7,730	10,900	8,090
Sodium (Filtered)	µg/L	200	128500	200000	11,200	69,600	25,800	85,300	17,300	20,600	17,000	86,500	13,700
Inorganics													
Alkalinity (as CaCO3)	mg/L	5	400	500	396	390	360	412	311	203	299	377	317
Hardness (as CaCO3) (Filtered)	mg/L	1	421	500	390	430	395	499	345	223	337	550	411
Solids - Total Dissolved (TDS)	mg/L	3	502	500	446	606	479	647	374	299	379	677	398
Solids - Total Suspended (TSS)	mg/L	3			273	-	-	-	-	-	-	-	-
Oxygen Demand - Chemical (COD)	mg/L	5			<5	7	5	<5	<5	20	40	24	40
Organic Carbon - Dissolved (DOC) (Filtered)	mg/L	0.2	3.6	5	1.8	5.1	8.1	8	2.3	2.9	2.3	3.3	1.1
Oxygen Demand - Biological (BOD)	mg/L	3			<5	-	-	-	-	-	-	-	-
Sulphate (Filtered)	mg/L	1	259	500	23.9	26	22	27	14	11	11	22	16
Ammonia	mg/L	0.01			<0.02	0.02	<0.01	0.03	0.03	0.06	0.05	0.02	0.03
Nitrate (as N)	mg/L	0.05	3.2	10	1.63	2.78	2.17	1.56	1.6	1.31	1.85	1.01	1.07
Conductivity (lab)	µS/cm	1			784	1,100	871	1,200	718	576	727	1,250	760
pH (Lab)	-			6.5-8.5	7.02	7.31	7.61	7.47	7.72	7.9	7.63	7.43	7.58
Field						-							
DO (Field)	mg/L				7.2	2.59	4.98	2.61	5.75	8.52	5.98	2.8	6.7
Redox Potential (Field)	mV				-	-5	128	98	120	148	111	75	263
Temp (Field)	°C				11.2	11.2	13.1	11.2	9.9	7	9.1	7.8	10.9
Conductivity (field)	µS/cm				699	1,220	990	1,360	720	520	730	830	602
pH (Field)	-			6.5-8.5	8	6.68	6.94	6.73	7.5	7.55	7.16	7.05	6.92

			RUC	ODWQS	00-1-L									
	Unit	RDL			2011-05-11	2012-05-02	2012-11-28	2013-06-04	2013-12-05	2014-05-12	2014-10-27	2015-04-06	2015-10-27	2016-04-01
Metals						-				·		·	·	
Barium (Filtered)	µg/L	1	267	1000	22	20	20	20	18	70	19	17	19	23
Boron (Filtered)	µg/L	5	2623	5000	310	333	292	241	335	15	315	442	404	218
Calcium (Filtered)	µg/L	20			110,000	105,000	102,000	123,000	104,000	94,100	107,000	114,000	115,000	104,000
Chloride	µg/L	500	142000	250000	31,000	29,400	34,900	16,000	16,500	18,100	21,200	5,780	6,500	19,900
Iron (Filtered)	µg/L	5	166	300	500	876	232	<10	276	<10	54	594	15	29
Manganese (Filtered)	µg/L	1	30	50	-	93	9	14	9	20	71	25	8	6
Magnesium (Filtered)	µg/L	20			38,000	38,000	36,000	46,700	38,700	33,200	39,000	42,500	41,500	38,300
Sodium (Filtered)	µg/L	200	114200	200000	29,000	27,400	23,500	30,100	34,800	10,200	23,100	23,000	31,100	38,700
Inorganics														
Alkalinity (as CaCO3)	mg/L	5	371	500	243	242	241	234	228	222	240	208	215	238
Hardness (as CaCO3) (Filtered)	mg/L	1	453	500	-	419	403	499	419	387	428	460	458	417
Solids - Total Dissolved (TDS)	mg/L	3	500	500	538	582	514	644	634	380	604	638	654	614
Solids - Total Suspended (TSS)	mg/L				-	48	19	36	<10	197	24	46	22	26
Oxygen Demand - Chemical (COD)	mg/L	5			<4	9	<5	7	7	7	<5	<5	<5	<5
Organic Carbon - Dissolved (DOC) (Filtered)	mg/L	0.2	3.6	5	0.9	2.4	1.7	1	1.4	1.5	2.4	1.5	3.7	1.1
Oxygen Demand - Biological (BOD)	mg/L				-	<5	<5	<5	<5	<5	<5	<5	<5	<5
Sulphate (Filtered)	mg/L	1	326	500	170	224	196	278	279	241	232	309	300	266
Ammonia	mg/L	0.01			< 0.05	< 0.02	<0.02	0.02	0.03	0.07	0.5	0.04	<0.02	<0.02
Nitrate (as N)	mg/L	0.05	2.7	10	0.2	0.12	0.07	<0.25	<0.25	0.13	0.53	<0.25	<0.25	0.35
Conductivity (lab)	µS/cm	1			883	865	804	981	936	914	940	926	967	944
pH (Lab)	-			6.5-8.5	8.04	8.2	8.27	7.87	8.27	8.18	8.12	8.2	8.07	8.05
Field														
DO (Field)	mg/L				-	-	-	-	-	-	-	-	-	7.9
Redox Potential (Field)	mV				-	-	-	-	-	-	-	-	-	-
Temp (Field)	°C				-	-	-	-	-	-	-	-	-	6.9
Conductivity (field)	µS/cm				-	-	-	-	-	-	-	-	-	957
pH (Field)	-			6.5-8.5	-	-	-	-	-	-	-	-	-	8.2

			RUC	ODWQS	00-1-L								
	Unit	RDL			2016-10-01	2017-06-07	2017-10-04	2018-05-28	2018-11-15	2019-04-15	2019-11-11	2020-04-20	2020-11-09
Metals										-		-	
Barium (Filtered)	µg/L	1	267	1000	19	36	22	19	16	14	33	33	37
Boron (Filtered)	µg/L	5	2623	5000	385	259	379	483	434	410	247	340	317
Calcium (Filtered)	µg/L	20			107,000	107,000	108,000	111,000	113,000	104,000	96,200	110,000	116,000
Chloride	µg/L	500	142000	250000	10,600	30,500	16,400	6,300	6,300	6,200	45,700	20,900	11,100
Iron (Filtered)	µg/L	5	166	300	166	143	30	258	201	398	42	191	13
Manganese (Filtered)	µg/L	1	30	50	9	22	2	12	11	14	4	6	4
Magnesium (Filtered)	µg/L	20			38,100	28,600	41,200	48,900	45,700	43,400	29,500	35,900	31,900
Sodium (Filtered)	µg/L	200	114200	200000	31,700	44,600	35,600	31,300	30,400	27,200	45,100	45,800	43,800
Inorganics													
Alkalinity (as CaCO3)	mg/L	5	371	500	231	223	215	205	192	192	225	216	183
Hardness (as CaCO3) (Filtered)	mg/L	1	453	500	424	384	439	478	470	438	362	423	421
Solids - Total Dissolved (TDS)	mg/L	3	500	500	640	515	527	471	524	487	451	473	468
Solids - Total Suspended (TSS)	mg/L				35	-	-	-	-	-	-	-	-
Oxygen Demand - Chemical (COD)	mg/L	5			<5	35	<5	<5	5	20	8	<5	<5
Organic Carbon - Dissolved (DOC) (Filtered)	mg/L	0.2	3.6	5	2.2	2.2	4.7	3.7	2.6	4.2	2.7	2	1.1
Oxygen Demand - Biological (BOD)	mg/L				<5	-	-	-	-	-	-	-	-
Sulphate (Filtered)	mg/L	1	326	500	308	177	225	284	293	285	165	252	275
Ammonia	mg/L	0.01			<0.02	<0.01	<0.01	0.03	0.05	0.06	0.01	<0.01	0.03
Nitrate (as N)	mg/L	0.05	2.7	10	0.27	0.57	0.27	0.08	0.06	0.06	0.36	0.28	0.11
Conductivity (lab)	µS/cm	1			950	936	959	890	938	918	854	893	884
pH (Lab)	-			6.5-8.5	7.47	7.86	8.09	7.95	7.91	7.98	7.89	7.83	7.84
Field													
DO (Field)	mg/L				8.7	6.3	6.98	6.75	4.2	3.56	8.31	6.47	6.85
Redox Potential (Field)	mV				-	56	164	103	112	154	170	154	260
Temp (Field)	°C				8.6	13.5	10.7	12.8	7.2	7	6.3	9.1	10.4
Conductivity (field)	µS/cm				832	1,040	910	960	870	790	880	920	690
pH (Field)	-			6.5-8.5	7.2	7.42	7.6	7.57	7.38	7.39	7.02	7.93	7.48

			RUC	ODWQS	00-1-M										
	Unit	RDL			2011-05-11	2012-05-02	2012-11-28	2013-06-04	2013-12-05	2014-05-13	2014-10-27	2015-04-06	2015-11-05	2016-04-01	2016-10-01
Metals							·	-		·		-		·	
Barium (Filtered)	µg/L	1	267	1000	23	25	26	22	26	24	22	23	20	25	32
Boron (Filtered)	µg/L	5	2623	5000	240	231	232	220	209	236	246	242	194	230	223
Calcium (Filtered)	µg/L	20			100,000	99,700	103,000	111,000	93,900	101,000	94,200	97,500	99,500	95,300	99,300
Chloride	µg/L	500	142000	250000	36,000	42,500	42,100	38,100	39,000	65,100	37,500	39,200	34,900	38,600	39,700
Iron (Filtered)	µg/L	5	166	300	200	15	<10	<10	<10	<10	14	<10	<10	34	86
Manganese (Filtered)	µg/L	1	30	50	-	6	4	4	2	<2	16	35	19	19	60
Magnesium (Filtered)	µg/L	20			35,000	34,300	34,400	39,000	32,600	4,060	32,500	32,600	32,800	33,700	30,300
Sodium (Filtered)	µg/L	200	114200	200000	28,000	16,300	12,400	12,500	10,700	38,500	39,400	30,200	34,300	28,800	25,700
Inorganics															
Alkalinity (as CaCO3)	mg/L	5	371	500	256	268	254	255	265	254	267	277	291	285	305
Hardness (as CaCO3) (Filtered)	mg/L	1	453	500	-	390	399	438	369	269	369	378	384	377	373
Solids - Total Dissolved (TDS)	mg/L	3	500	500	522	550	470	500	464	486	530	496	482	504	504
Solids - Total Suspended (TSS)	mg/L				-	89	56	396	66	78	34	<10	304	1,700	1,090
Oxygen Demand - Chemical (COD)	mg/L	5			6	8	<5	<5	<5	<5	<5	<5	22	<5	<5
Organic Carbon - Dissolved (DOC) (Filtered)	mg/L	0.2	3.6	5	1	1.7	3	2	2.4	2.1	1.1	1.5	1.7	1.2	1.9
Oxygen Demand - Biological (BOD)	mg/L				-	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Sulphate (Filtered)	mg/L	1	326	500	130	129	107	128	113	15.7	137	132	113	132	139
Ammonia	mg/L	0.01			0.28	0.04	<0.02	0.12	0.03	0.05	0.1	0.07	0.15	0.06	0.16
Nitrate (as N)	mg/L	0.05	2.7	10	0.1	0.2	0.1	<0.25	0.33	0.43	<0.1	<0.25	0.41	<0.25	<0.25
Conductivity (lab)	µS/cm	1			845	788	748	854	784	822	918	838	861	857	861
pH (Lab)	-			6.5-8.5	8.08	8.16	8.17	7.9	8.17	8.16	7.94	8.29	8.24	8.11	7.45
Field															
DO (Field)	mg/L				-	-	-	-	-	-	-	-	-	7.9	8.7
Redox Potential (Field)	mV				-	-	-	-	-	-	-	-	-	-	-
Temp (Field)	0°				-	-	-	-	-	-	-	-	-	9.1	9
Conductivity (field)	µS/cm				-	-	-	-	-	-	-	-	-	870	730
pH (Field)	-			6.5-8.5	-	-	-	-	-	-	-	-	-	8.1	7.4

			RUC	ODWQS	00-1-M	00-1-M	00-1-M	00-1-M	00-1-M	00-1-M	00-1-M	00-1-M
	Unit	RDL			2017-06-07	2017-10-04	2018-05-28	2018-11-15	2019-04-15	2019-11-11	2020-04-20	2020-11-09
Metals								· · · · · · · · · · · · · · · · · · ·	-		-	
Barium (Filtered)	µg/L	1	267	1000	24	27	27	26	23	23	27	30
Boron (Filtered)	µg/L	5	2623	5000	240	232	267	241	239	250	264	233
Calcium (Filtered)	µg/L	20			100,000	95,800	103,000	104,000	97,200	91,800	106,000	106,000
Chloride	µg/L	500	142000	250000	30,900	33,100	37,500	36,900	35,400	37,400	36,700	35,900
Iron (Filtered)	µg/L	5	166	300	501	14	376	107	<5	<5	5	13
Manganese (Filtered)	µg/L	1	30	50	60	3	38	17	4	2	1	9
Magnesium (Filtered)	µg/L	20			35,500	32,900	39,100	36,300	33,500	35,700	37,100	33,600
Sodium (Filtered)	µg/L	200	114200	200000	26,400	18,600	21,700	16,400	14,700	20,900	26,500	30,800
Inorganics												
Alkalinity (as CaCO3)	mg/L	5	371	500	87	270	276	262	256	253	260	254
Hardness (as CaCO3) (Filtered)	mg/L	1	453	500	397	375	418	409	381	376	417	403
Solids - Total Dissolved (TDS)	mg/L	3	500	500	500	447	148	428	432	416	425	422
Solids - Total Suspended (TSS)	mg/L				-	-	-	-	-	-	-	-
Oxygen Demand - Chemical (COD)	mg/L	5			9	<5	<5	<5	<5	11	<5	<5
Organic Carbon - Dissolved (DOC) (Filtered)	mg/L	0.2	3.6	5	3.4	6.6	12.6	3.4	2.8	5.5	2.1	0.9
Oxygen Demand - Biological (BOD)	mg/L				-	-	-	-	-	-	-	-
Sulphate (Filtered)	mg/L	1	326	500	104	87	113	104	114	117	114	107
Ammonia	mg/L	0.01			0.14	<0.01	0.04	0.07	0.07	0.02	0.01	0.04
Nitrate (as N)	mg/L	0.05	2.7	10	0.12	0.11	0.09	0.2	0.11	0.05	0.16	< 0.05
Conductivity (lab)	µS/cm	1			909	812	796	813	820	793	808	804
pH (Lab)	-			6.5-8.5	6.62	8.08	8.09	7.9	8	7.92	7.87	7.89
Field												
DO (Field)	mg/L				3.13	8.27	7.86	2.96	7.83	7.59	6.22	7.94
Redox Potential (Field)	mV				68	153	116	129	157	167	144	63
Temp (Field)	°C				9.5	10.4	14.2	7.9	619	6.8	7.9	8.2
Conductivity (field)	µS/cm				950	780	850	760	710	810	860	892
pH (Field)	-			6.5-8.5	7.18	7.49	7.57	7.2	7.41	7.16	7.83	7.45

			RUC	ODWQS	97-1-L	97-1-L	97-1-L	97-1-L	97-1-L	97-1-L	97-1-L	97-1-L	97-1-L	97-1-L
	Unit	RDL			2011-05-11	2012-05-02	2012-11-29	2013-06-04	2013-12-05	2014-05-12	2014-10-27	2015-10-28	2016-10-01	2017-06-07
Metals						-	-	-	· · · · · · · · · · · · · · · · · · ·	-	·	-	-	
Barium (Filtered)	µg/L	1	267	1000	29	31	28	23	39	40	49	47	72	51
Boron (Filtered)	µg/L	5	2623	5000	250	247	277	215	199	197	186	251	221	239
Calcium (Filtered)	µg/L	20			69,000	68,200	69,300	98,400	73,100	81,800	88,500	80,700	89,900	86,500
Chloride	µg/L	500	142000	250000	11,000	10,000	10,000	13,300	9,950	19,000	20,400	9,900	14,900	19,300
Iron (Filtered)	µg/L	5	166	300	<100	<10	<10	<10	<10	<10	<10	<10	<10	<5
Manganese (Filtered)	µg/L	1	30	50	-	<2	<2	<2	<2	52	2	2	<2	<1
Magnesium (Filtered)	µg/L	20			26,000	27,000	27,200	24,100	23,600	22,000	24,600	26,100	23,500	29,600
Sodium (Filtered)	µg/L	200	114200	200000	16,000	16,300	15,300	12,600	15,000	13,600	18,800	17,400	18,000	23,200
Inorganics														
Alkalinity (as CaCO3)	mg/L	5	371	500	204	213	201	275	233	228	266	246	277	242
Hardness (as CaCO3) (Filtered)	mg/L	1	453	500	-	281	285	345	280	295	322	309	321	338
Solids - Total Dissolved (TDS)	mg/L	3	500	500	356	386	342	336	342	372	436	402	410	387
Solids - Total Suspended (TSS)	mg/L				-	32	26	60	13	53	13	24	13	-
Oxygen Demand - Chemical (COD)	mg/L	5			5	6	<5	<5	<5	<5	<5	<5	<5	7
Organic Carbon - Dissolved (DOC) (Filtered)	mg/L	0.2	3.6	5	0.8	1.1	1.3	2	1.7	1.9	1.2	1.3	1.7	2.1
Oxygen Demand - Biological (BOD)	mg/L				-	<5	<5	<5	<5	<5	<5	<5	<5	-
Sulphate (Filtered)	mg/L	1	326	500	78	104	95.4	51.9	84.9	57.7	74.1	90.6	93.2	76
Ammonia	mg/L	0.01			< 0.05	<0.02	<0.02	<0.02	< 0.02	0.03	<0.02	< 0.02	< 0.02	<0.01
Nitrate (as N)	mg/L	0.05	2.7	10	1.1	1.19	0.95	2.19	1.23	1.03	0.81	1.18	1.86	1.8
Conductivity (lab)	µS/cm	1			579	577	553	684	619	621	743	658	688	704
pH (Lab)	-			6.5-8.5	8.08	8.21	8.19	7.94	8.15	8.15	7.75	7.79	7.21	7.94
Field														
DO (Field)	mg/L				-	-	-	-	-	-	-	-	7.7	9.06
Redox Potential (Field)	mV				-	-	-	-	-	-	-	-	-	37
Temp (Field)	°C				-	-	-	-	-	-	-	-	9.9	13.4
Conductivity (field)	µS/cm				-	-	-	-	-	-	-	-	623	730
pH (Field)	-			6.5-8.5	-	-	-	-	-	-	-	-	7.1	7.72

			RUC	ODWQS	97-1-L	97-1-L	97-1-L	97-1-L	97-1-L	97-1-L	97-1-L	97-1-L
	Unit	RDL			2017-10-04	2018-05-28	2018-11-15	2019-04-15	2019-11-11	2020-04-20	2020-05-16	2020-11-09
Metals						-	-	·	· · · · · · · · · · · · · · · · · · ·	-	· · · · · · · · · · · · · · · · · · ·	
Barium (Filtered)	µg/L	1	267	1000	57	45	45	40	63	59	48	53
Boron (Filtered)	µg/L	5	2623	5000	213	258	226	199	145	207	215	238
Calcium (Filtered)	µg/L	20			85,100	81,700	76,400	70,500	76,000	83,900	84,000	88,300
Chloride	µg/L	500	142000	250000	38,000	15,700	19,600	16,600	23,800	18,800	15,400	28,800
Iron (Filtered)	µg/L	5	166	300	5	<5	<5	<5	<5	<5	66	26
Manganese (Filtered)	µg/L	1	30	50	1	2	<1	1	<1	1	30	4
Magnesium (Filtered)	µg/L	20			27,400	30,300	26,700	23,700	21,000	26,300	27,100	27,800
Sodium (Filtered)	µg/L	200	114200	200000	23,500	24,800	19,900	16,300	22,900	19,700	19,000	19,500
Inorganics												
Alkalinity (as CaCO3)	mg/L	5	371	500	262	225	215	220	225	230	268	229
Hardness (as CaCO3) (Filtered)	mg/L	1	453	500	325	329	301	274	276	318	321	335
Solids - Total Dissolved (TDS)	mg/L	3	500	500	423	323	335	322	325	328	392	356
Solids - Total Suspended (TSS)	mg/L				-	-	-	-	-	-	20	-
Oxygen Demand - Chemical (COD)	mg/L	5			7	<5	6	26	<5	<5	<5	14
Organic Carbon - Dissolved (DOC) (Filtered)	mg/L	0.2	3.6	5	3.9	8.4	2.3	3.5	6.1	2.3	1.2	1
Oxygen Demand - Biological (BOD)	mg/L				-	-	-	-	-	-	<5	-
Sulphate (Filtered)	mg/L	1	326	500	59	93	83	66	60	69	82.3	87
Ammonia	mg/L	0.01			<0.01	0.01	0.02	0.04	<0.01	<0.01	<0.02	0.01
Nitrate (as N)	mg/L	0.05	2.7	10	1.77	1.16	0.99	1.33	1.72	1.47	2.02	0.11
Conductivity (lab)	µS/cm	1			769	622	645	621	627	631	684	685
pH (Lab)	-			6.5-8.5	7.94	8.09	7.98	8.08	7.78	7.9	8.12	7.84
Field												
DO (Field)	mg/L				10.64	8.47	8.75	11.39	8.05	8.92	10.2	7.84
Redox Potential (Field)	mV				159	102	104	144	136	49	-	275
Temp (Field)	°C				13.1	13.1	9.3	7	8.3	10.4	10.6	11.1
Conductivity (field)	µS/cm				690	650	630	570	680	520	750	513
pH (Field)	-			6.5-8.5	7.71	7.65	7.75	7.8	7.26	8.15	8	7.23

			RUC	ODWQS	97-1-M	97-1-M	97-1-M	97-1-M						
	Unit	RDL			2011-05-01	2012-05-02	2012-11-29	2013-06-04	2013-12-05	2014-05-12	2014-10-27	2015-04-06	2015-10-29	2016-04-01
Metals						-		·	·		· · · · · · · · · · · · · · · · · · ·			
Barium (Filtered)	µg/L	1	267	1000	39	38	36	69	65	77	113	60	51	194
Boron (Filtered)	µg/L	5	2623	5000	190	193	280	173	195	103	135	227	247	55
Calcium (Filtered)	µg/L	20			69,000	69,800	67,500	89,500	70,500	110,000	96,000	80,500	72,700	151,000
Chloride	µg/L	500	142000	250000	11,000	10,300	9,880	11,700	10,200	28,400	21,300	12,000	9,900	37,900
Iron (Filtered)	µg/L	5	166	300	<100	<10	<10	<10	<10	<10	<20	<10	<10	<10
Manganese (Filtered)	µg/L	1	30	50	-	<2	4	<2	<2	<2	<2	6	<2	<2
Magnesium (Filtered)	µg/L	20			22,000	25,900	27,100	22,600	22,600	15,400	23,200	25,100	26,100	21,000
Sodium (Filtered)	µg/L	200	114200	200000	12,000	15,300	13,000	10,400	12,400	24,800	19,100	15,300	12,100	28,900
Inorganics														
Alkalinity (as CaCO3)	mg/L	5	371	500	209	219	214	251	237	320	289	239	240	402
Hardness (as CaCO3) (Filtered)	mg/L	1	453	500	-	281	280	317	269	338	335	304	289	464
Solids - Total Dissolved (TDS)	mg/L	3	500	500	396	364	350	378	354	446	412	356	332	524
Solids - Total Suspended (TSS)	mg/L				-	146	154	163	47	116	192	214	59	164
Oxygen Demand - Chemical (COD)	mg/L	5			<5	<5	<5	5	<5	<5	<5	<5	<5	<5
Organic Carbon - Dissolved (DOC) (Filtered)	mg/L	0.2	3.6	5	0.9	1.1	1.5	2	4.5	2	2.5	2	0.8	2.8
Oxygen Demand - Biological (BOD)	mg/L				-	<5	<5	<5	<5	<5	<5	<5	<5	<5
Sulphate (Filtered)	mg/L	1	326	500	57	84.5	103	55.7	76	45.6	52.2	81.8	74	35.5
Ammonia	mg/L	0.01			< 0.05	<0.02	<0.02	0.61	<0.02	0.03	0.05	0.03	<0.02	<0.02
Nitrate (as N)	mg/L	0.05	2.7	10	1	1.26	1.12	1.66	1.36	1.4	1.52	1.33	1.45	5.54
Conductivity (lab)	µS/cm	1			538	568	567	648	622	798	755	622	599	917
pH (Lab)	-			6.5-8.5	8	8.1	8.08	7.88	8.03	8.13	7.92	8.27	7.93	7.98
Field														
DO (Field)	mg/L				-	-	-	-	-	-	-	-	-	11
Redox Potential (Field)	mV				-	-	-	-	-	-	-	-	-	-
Temp (Field)	°C				-	-	-	-	-	-	-	-	-	12.3
Conductivity (field)	µS/cm				-	-	-	-	-	-	-	-	-	942
pH (Field)	-			6.5-8.5	-	-	-	-	-	-	-	-	-	8.2

			RUC	ODWQS	97-1-M								
	Unit	RDL			2016-10-01	2017-06-07	2017-10-04	2018-05-28	2018-11-15	2019-04-15	2019-11-11	2020-04-20	2020-11-09
Metals													
Barium (Filtered)	µg/L	1	267	1000	81	104	81	62	61	117	68	109	64
Boron (Filtered)	µg/L	5	2623	5000	210	108	209	200	236	38	168	122	248
Calcium (Filtered)	µg/L	20			88,400	117,000	88,900	78,000	84,400	91,400	76,400	93,500	89,200
Chloride	µg/L	500	142000	250000	15,400	77,200	28,900	21,700	17,200	28,200	25,700	20,400	22,800
Iron (Filtered)	µg/L	5	166	300	<10	<5	5	<5	<5	<5	<5	<5	10
Manganese (Filtered)	µg/L	1	30	50	2	<1	<1	<1	<1	4	<1	<1	1
Magnesium (Filtered)	µg/L	20			23,700	24,800	25,500	24,500	28,100	8,950	24,400	19,000	29,700
Sodium (Filtered)	µg/L	200	114200	200000	16,300	48,100	23,300	21,800	18,600	21,600	20,700	18,500	15,600
Inorganics													
Alkalinity (as CaCO3)	mg/L	5	371	500	298	293	240	221	230	266	230	239	212
Hardness (as CaCO3) (Filtered)	mg/L	1	453	500	318	394	327	296	326	265	291	312	345
Solids - Total Dissolved (TDS)	mg/L	3	500	500	410	518	392	307	343	325	335	318	334
Solids - Total Suspended (TSS)	mg/L				221	-	-	-	-	-	-	-	-
Oxygen Demand - Chemical (COD)	mg/L	5			<5	8	6	8	13	11	8	<5	<5
Organic Carbon - Dissolved (DOC) (Filtered)	mg/L	0.2	3.6	5	1.8	2.5	6.1	51.1	2	3.3	8.5	2.7	1.3
Oxygen Demand - Biological (BOD)	mg/L				<5	-	-	-	-	-	-	-	-
Sulphate (Filtered)	mg/L	1	326	500	85.8	38	64	66	80	16	70	44	80
Ammonia	mg/L	0.01			<0.02	<0.01	<0.01	0.01	0.03	0.05	<0.01	0.02	<0.01
Nitrate (as N)	mg/L	0.05	2.7	10	1.68	3.14	1.4	0.93	1.08	2.11	1.56	1.32	0.18
Conductivity (lab)	µS/cm	1			690	941	712	591	660	625	646	612	644
pH (Lab)	-			6.5-8.5	7.37	7.92	7.96	8.09	7.87	8.05	7.77	7.88	7.92
Field													
DO (Field)	mg/L				7.46	10.33	9.09	11.62	9.03	10.26	9.29	8.55	6.6
Redox Potential (Field)	mV				-	14	155	-17	105	151	140	65	275
Temp (Field)	°C				10.3	12	13.1	12.4	6.5	6	5.7	9.3	10.4
Conductivity (field)	µS/cm				631	960	700	640	660	570	690	660	506
pH (Field)	-			6.5-8.5	7.2	7.54	7.66	7.54	7.9	7.45	7.45	7.78	7.43

			RUC	ODWQS	97-2-L									
	Unit	RDL			2011-05-01	2012-05-02	2012-11-29	2013-06-04	2013-12-05	2014-05-12	2014-10-27	2015-10-28	2016-04-01	2016-10-01
Metals						-		-			·		·	
Barium (Filtered)	µg/L	1	267	1000	23	21	24	20	25	22	23	25	27	25
Boron (Filtered)	µg/L	5	2623	5000	860	680	912	713	709	756	793	765	682	709
Calcium (Filtered)	µg/L	20			61,000	59,200	60,600	61,800	49,800	50,600	52,800	56,600	58,100	61,200
Chloride	µg/L	500	142000	250000	4,000	4,500	4,470	4,400	4,100	4,560	4,050	3,160	4,120	3,540
Iron (Filtered)	µg/L	5	166	300	<100	<10	<10	<10	<10	<10	<10	<10	45	24
Manganese (Filtered)	µg/L	1	30	50	-	<2	<2	<2	3	<2	12	8	10	20
Magnesium (Filtered)	µg/L	20			29,000	27,500	27,700	29,500	25,200	26,700	26,000	26,500	27,800	27,200
Sodium (Filtered)	µg/L	200	114200	200000	27,000	25,300	25,400	27,700	24,400	26,100	24,500	24,200	24,100	23,500
Inorganics														
Alkalinity (as CaCO3)	mg/L	5	371	500	185	191	185	182	186	163	168	183	184	179
Hardness (as CaCO3) (Filtered)	mg/L	1	453	500	-	261	265	276	228	236	239	250	260	265
Solids - Total Dissolved (TDS)	mg/L	3	500	500	384	406	406	390	360	380	370	394	-	426
Solids - Total Suspended (TSS)	mg/L				-	76	173	54	53	79	250	195	-	217
Oxygen Demand - Chemical (COD)	mg/L	5			7	<5	<5	<5	<5	5	<5	<5	<5	<5
Organic Carbon - Dissolved (DOC) (Filtered)	mg/L	0.2	3.6	5	0.6	4.1	1.8	<1	1.1	2.2	0.9	4.2	0.9	2.1
Oxygen Demand - Biological (BOD)	mg/L				-	<5	<5	<5	<5	<5	<5	<5	<5	<5
Sulphate (Filtered)	mg/L	1	326	500	140	160	150	141	140	142	143	143	152	169
Ammonia	mg/L	0.01			0.05	<0.02	<0.02	<0.02	0.03	0.02	0.05	<0.02	<0.02	0.19
Nitrate (as N)	mg/L	0.05	2.7	10	0.4	0.87	0.47	0.48	<0.1	0.41	<0.1	<0.25	<0.25	<0.25
Conductivity (lab)	µS/cm	1			651	619	614	662	603	620	644	631	639	601
pH (Lab)	-			6.5-8.5	8.02	8.25	8.12	7.85	8.09	8.19	8.11	7.72	8.12	8.07
Field														
DO (Field)	mg/L				-	-	-	-	-	-	-	-	8.8	9.35
Redox Potential (Field)	mV				-	-	-	-	-	-	-	-	-	-
Temp (Field)	°C				-	-	-	-	-	-	-	-	10	9.3
Conductivity (field)	µS/cm				-	-	-	-	-	-	-	-	1,238	593
pH (Field)	-			6.5-8.5	-	-	-	-	-	-	-	-	7.4	7.4

			RUC	ODWQS	97-2-L							
	Unit	RDL			2017-06-07	2017-10-04	2018-05-28	2018-11-15	2019-04-15	2019-11-11	2020-04-20	2020-11-09
Metals								·	-		-	
Barium (Filtered)	µg/L	1	267	1000	22	24	22	21	19	20	24	23
Boron (Filtered)	µg/L	5	2623	5000	807	809	869	779	730	795	819	807
Calcium (Filtered)	µg/L	20			61,800	55,300	55,700	57,700	51,100	50,100	57,100	65,100
Chloride	µg/L	500	142000	250000	3,400	3,600	5,100	5,000	5,400	3,500	5,100	4,600
Iron (Filtered)	µg/L	5	166	300	<5	6	<5	<5	<5	<5	17	77
Manganese (Filtered)	µg/L	1	30	50	3	1	<1	<1	<1	<1	5	5
Magnesium (Filtered)	µg/L	20			30,200	30,000	31,600	29,400	27,000	28,700	29,300	29,100
Sodium (Filtered)	µg/L	200	114200	200000	26,900	23,600	29,000	29,700	24,300	26,100	26,800	24,700
Inorganics												
Alkalinity (as CaCO3)	mg/L	5	371	500	176	170	167	159	157	158	158	154
Hardness (as CaCO3) (Filtered)	mg/L	1	453	500	278	262	269	265	239	243	263	282
Solids - Total Dissolved (TDS)	mg/L	3	500	500	353	348	317	329	322	313	311	312
Solids - Total Suspended (TSS)	mg/L				-	-	-	-	-	-	-	-
Oxygen Demand - Chemical (COD)	mg/L	5			<5	<5	<5	<5	12	7	18	<5
Organic Carbon - Dissolved (DOC) (Filtered)	mg/L	0.2	3.6	5	2.5	2.8	13.1	1.8	2.7	<0.2	4.7	0.8
Oxygen Demand - Biological (BOD)	mg/L				-	-	-	-	-	-	-	-
Sulphate (Filtered)	mg/L	1	326	500	128	127	149	155	152	150	146	147
Ammonia	mg/L	0.01			<0.01	<0.01	<0.01	0.04	0.06	0.04	0.05	<0.01
Nitrate (as N)	mg/L	0.05	2.7	10	0.54	0.33	1.11	1.04	0.23	0.12	0.67	0.22
Conductivity (lab)	µS/cm	1			642	632	611	634	621	603	600	602
pH (Lab)	-			6.5-8.5	8.13	8.13	8.1	8.09	8.06	7.97	7.74	8.06
Field												
DO (Field)	mg/L				8.85	9.4	12.18	6.19	12.58	8.34	10.37	11.01
Redox Potential (Field)	mV				1	106	34	125	149	110	37	68
Temp (Field)	°C				14.7	14	19	6.6	6	7.1	10.5	9.3
Conductivity (field)	µS/cm				820	580	680	630	560	640	670	633
pH (Field)	-			6.5-8.5	7.87	7.97	7.77	8.14	7.99	8.12	8.46	7.77

Unit RDL 2011-05-01 2012-05-01 2013-06-04 2013-12-05 2014-05-72 2015-04-27 2015-04-27 2015-04-27 2015-04-07 2016-04-01				RUC	ODWQS	98-1-L	98-1-L	98-1-L	98-1-L	98-1-L	98-1-L	98-1-L	98-1-L	98-1-L	98-1-L	98-1-L
Metals up(L 1 267 1000 17 15 15 17 18 16 17 16 17 18 16 Boron (Filtered) µg/L 5 2623 5000 660 521 575 662 629 706 697 752 752 647 638 Calcium (Filtered) µg/L 20 76,000 82,800 66,900 103,000 92,100 81,800 81,700 96,600 111,000 98,900 95,700 Choirde µg/L 5 166 300 100 <10		Unit	RDL			2011-05-01	2012-05-01	2012-11-01	2013-06-04	2013-12-05	2014-05-12	2014-10-27	2015-04-07	2015-10-28	2016-04-01	2016-10-01
Bartom (Filtered) µg/L 1 267 1000 17 15 15 17 18 16 17 16 17 18 16 Boron (Filtered) µg/L 5 2623 5000 680 521 575 662 629 706 697 752 647 638 Calcium (Filtered) µg/L 500 142000 28000 7.000 6.040 5.330 8.330 7.130 7.260 6.50 7.590 6.300 7.030 6.260 Iron (Filtered) µg/L 5 166 300 100 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <td>Metals</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>· · · · · · · · · · · · · · · · · · ·</td> <td>-</td> <td></td> <td>· · · · · · · · · · · · · · · · · · ·</td> <td>· · · · · · · · · · · · · · · · · · ·</td> <td>· · · · · · · · · · · · · · · · · · ·</td> <td>-</td> <td>· · · · · · · · · · · · · · · · · · ·</td> <td></td> <td></td>	Metals						· · · · · · · · · · · · · · · · · · ·	-		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	-	· · · · · · · · · · · · · · · · · · ·		
Born (Filtered) µg/L 5 2623 500 680 521 575 662 629 706 697 762 752 647 638 Calcium (Filtered) µg/L 500 142000 25000 76,000 82,800 66,900 103,000 92,100 81,800 81,700 96,600 111,000 98,900 95,700 Chloride µg/L 5 166 300 100 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	Barium (Filtered)	µg/L	1	267	1000	17	15	15	17	18	16	17	16	17	18	16
Calcium (Filtered) µg/L 20 r 76,000 82,800 66,900 103,000 92,100 81,800 81,700 96,600 111,000 98,900 95,700 Chorde µg/L 50 142000 250000 7,000 6,040 5,330 8,330 7,130 7,260 6,50 7,590 6,360 7,030 6,260 Iron (Filtered) µg/L 1 30 50 - 3 <2	Boron (Filtered)	µg/L	5	2623	5000	680	521	575	662	629	706	697	762	752	647	638
Indicate µg/L 500 142000 250000 7,000 6,040 5,330 8,330 7,130 7,260 6,530 7,590 6,360 7,030 6,260 Iron (Filtered) µg/L 1 30 50 - 3 <2	Calcium (Filtered)	µg/L	20			76,000	82,800	66,900	103,000	92,100	81,800	81,700	96,600	111,000	98,900	95,700
Iron (Filtered) µg/L 5 166 300 100 <10 <10 <10 220 <10 <10 255 235 <10 <10 Magnese (Filtered) µg/L 1 30 50 - 3 <2	Chloride	µg/L	500	142000	250000	7,000	6,040	5,330	8,330	7,130	7,260	6,530	7,590	6,360	7,030	6,260
Manganese (Filtered) µg/L 1 30 50 - 3 <2 <2 17 17 3 18 28 12 <22 Magnesium (Filtered) µg/L 20 37,000 39,400 30,000 54,500 46,600 45,500 39,500 48,000 55,900 50,800 44,000 Iorganics Iorganic	Iron (Filtered)	µg/L	5	166	300	100	<10	<10	<10	220	<10	<10	255	235	<10	<10
Magnesium (Filtered) µg/L 20 m 37,000 39,400 30,000 54,500 46,600 44,500 39,500 48,000 55,900 50,800 44,000 Sodium (Filtered) µg/L 200 114200 200000 68,000 60,700 52,800 57,800 55,100 61,600 59,700 53,800 64,100 61,700 Inorganics mg/L 50 371 500 214 256 226 199 213 198 225 204 199 232 Hardness (as CaCO3) (Filtered) mg/L 1 453 500 - 369 291 482 422 388 367 439 507 456 420 Solids - Total Dissolved (TDS) mg/L 3 500 538 558 650 740 686 730 776 690 742 770 680 Oxygen Demand - Chemical (COD) mg/L 0. 7 75 5 5 5	Manganese (Filtered)	µg/L	1	30	50	-	3	<2	<2	17	17	3	18	28	12	<2
Sodium (Filtered) µg/L 200 114200 200000 68,000 60,700 57,800 55,100 61,600 59,700 53,800 64,100 61,700 Inorganics mg/L 5 371 500 214 256 226 199 213 198 225 204 190 199 232 Hardness (as CaCO3) (Filtered) mg/L 4 453 500 - 369 291 482 422 388 367 439 500 456 420 Solids - Total Dissolved (TDS) mg/L 3 500 538 558 650 740 686 730 776 690 742 770 680 Solids - Total Dissolved (TDS) mg/L 5 - 45 27 411 14 29 15 49 46 234 26 Oxygen Demand - Chemical (COD) mg/L 5 0.7 1.3 1.1 1 1.8 2.8 0.9 <td< td=""><td>Magnesium (Filtered)</td><td>µg/L</td><td>20</td><td></td><td></td><td>37,000</td><td>39,400</td><td>30,000</td><td>54,500</td><td>46,600</td><td>44,500</td><td>39,500</td><td>48,000</td><td>55,900</td><td>50,800</td><td>44,000</td></td<>	Magnesium (Filtered)	µg/L	20			37,000	39,400	30,000	54,500	46,600	44,500	39,500	48,000	55,900	50,800	44,000
Inorganics Inclusion <	Sodium (Filtered)	µg/L	200	114200	200000	68,000	60,700	67,200	52,800	57,800	55,100	61,600	59,700	53,800	64,100	61,700
Alkalinity (as CaCO3) mg/L 5 371 500 214 256 226 199 213 198 225 204 190 199 232 Hardness (as CaCO3) (Filtered) mg/L 1 453 500 - 369 291 482 422 388 367 439 507 456 420 Solids - Total Dissolved (TDS) mg/L 3 500 500 538 558 650 740 686 730 776 690 74 700 680 Solids - Total Suspended (TSS) mg/L 5 - - 45 27 41 14 29 15 49 46 234 26 Oxygen Demand - Chemical (COD) mg/L 5 - 7 <5	Inorganics															
Hardness (as CaCO3) (Filtered) mg/L 1 453 500 - 369 291 482 422 388 367 439 507 456 420 Solids - Total Dissolved (TDS) mg/L 3 500 500 538 558 650 740 686 730 776 690 742 770 680 Solids - Total Suspended (TSS) mg/L 4 45 27 41 14 29 15 49 46 234 26 Oxygen Demand - Chemical (COD) mg/L 5 7 75 55 5	Alkalinity (as CaCO3)	mg/L	5	371	500	214	256	226	199	213	198	225	204	190	199	232
Solids - Total Dissolved (TDS) mg/L 3 500 500 538 558 650 740 686 730 776 690 742 770 680 Solids - Total Suspended (TSS) mg/L Image: Comparison of the	Hardness (as CaCO3) (Filtered)	mg/L	1	453	500	-	369	291	482	422	388	367	439	507	456	420
Solids - Total Suspended (TSS) mg/L L L - 45 27 41 14 29 15 49 46 234 26 Oxygen Demand - Chemical (COD) mg/L 5 - 7 <5	Solids - Total Dissolved (TDS)	mg/L	3	500	500	538	558	650	740	686	730	776	690	742	770	680
Oxygen Demand - Chemical (COD) mg/L 5 7 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <	Solids - Total Suspended (TSS)	mg/L				-	45	27	41	14	29	15	49	46	234	26
Organic Carbon - Dissolved (DOC) (Filtered) mg/L 0.2 3.6 5 0.7 1.3 1.1 1 1.8 2.8 0.9 1.3 1 0.7 2.3 Oxygen Demand - Biological (BOD) mg/L 1 3.6 5 0.7 1.3 1.1 1 1.8 2.8 0.9 1.3 1 0.7 2.3 Oxygen Demand - Biological (BOD) mg/L 1 3.6 - <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <td>Oxygen Demand - Chemical (COD)</td> <td>mg/L</td> <td>5</td> <td></td> <td></td> <td>7</td> <td><5</td>	Oxygen Demand - Chemical (COD)	mg/L	5			7	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Oxygen Demand - Biological (BOD) mg/L I	Organic Carbon - Dissolved (DOC) (Filtered)	mg/L	0.2	3.6	5	0.7	1.3	1.1	1	1.8	2.8	0.9	1.3	1	0.7	2.3
Sulphate (Filtered) mg/L 1 326 500 250 283 224 392 353 362 316 378 430 409 381 Ammonia mg/L 0.01 <0.05	Oxygen Demand - Biological (BOD)	mg/L				-	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Ammonia mg/L 0.01 <0.05 <0.02 <0.02 0.11 0.04 <0.02 <0.02 0.03 0.11 <0.02 <0.02 Nitrate (as N) mg/L 0.05 2.7 10 0.2 0.06 0.23 <0.25	Sulphate (Filtered)	mg/L	1	326	500	250	283	224	392	353	362	316	378	430	409	381
Nitrate (as N) mg/L 0.05 2.7 10 0.2 0.06 0.23 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <	Ammonia	mg/L	0.01			< 0.05	<0.02	<0.02	0.11	0.04	<0.02	<0.02	0.03	0.11	<0.02	<0.02
	Nitrate (as N)	mg/L	0.05	2.7	10	0.2	0.06	0.23	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25
Conductivity (lab) µS/cm 1 895 932 827 1,130 1,020 1,060 1,030 1,050 1,140 1,080 1,070	Conductivity (lab)	µS/cm	1			895	932	827	1,130	1,020	1,060	1,030	1,050	1,140	1,080	1,070
pH (Lab) - 6.5-8.5 8.1 8.08 8.22 7.84 8.07 8.2 7.56 8.25 7.81 8.08 7.15	pH (Lab)	-			6.5-8.5	8.1	8.08	8.22	7.84	8.07	8.2	7.56	8.25	7.81	8.08	7.15
Field	Field															
DO (Field) mg/L 9 9.9 7.8	DO (Field)	mg/L				-	-	-	-	-	-	-	-	-	9.9	7.8
Redox Potential (Field) mV Image: Constraint of the second secon	Redox Potential (Field)	mV				-	-	-	-	-	-	-	-	-	-	-
Temp (Field) °C - - - - - - - 8.5 9.1	Temp (Field)	°C				-	-	-	-	-	-	-	-	-	8.5	9.1
Conductivity (field) µS/cm 1,003 877	Conductivity (field)	µS/cm				-	-	-	-	-	-	-	-	-	1,003	877
pH (Field) - 6.5-8.5 8.4 7.1	pH (Field)	-			6.5-8.5	-	-	-	-	-	-	-	-	-	8.4	7.1

			RUC	ODWQS	98-1-L							
	Unit	RDL			2017-06-07	2017-10-04	2018-05-28	2018-11-15	2019-04-15	2019-11-11	2020-04-20	2020-11-09
Metals												
Barium (Filtered)	µg/L	1	267	1000	16	16	18	16	14	15	17	17
Boron (Filtered)	µg/L	5	2623	5000	695	738	770	671	738	763	807	789
Calcium (Filtered)	µg/L	20			91,300	90,600	85,200	79,900	96,700	85,800	98,600	104,000
Chloride	µg/L	500	142000	250000	5,400	5,400	6,800	6,100	6,300	5,400	7,100	6,200
Iron (Filtered)	µg/L	5	166	300	<5	5	9	16	175	21	130	99
Manganese (Filtered)	µg/L	1	30	50	7	1	1	1	19	1	7	13
Magnesium (Filtered)	µg/L	20			45,300	49,600	48,100	42,000	54,000	50,800	54,000	51,500
Sodium (Filtered)	µg/L	200	114200	200000	68,900	61,600	76,500	76,900	54,300	68,500	66,900	63,200
Inorganics												
Alkalinity (as CaCO3)	mg/L	5	371	500	201	193	183	176	167	167	162	157
Hardness (as CaCO3) (Filtered)	mg/L	1	453	500	414	430	411	372	464	423	468	472
Solids - Total Dissolved (TDS)	mg/L	3	500	500	602	590	568	562	596	576	581	548
Solids - Total Suspended (TSS)	mg/L				-	-	-	-	-	-	-	-
Oxygen Demand - Chemical (COD)	mg/L	5			<5	<5	<5	<5	11	<5	<5	<5
Organic Carbon - Dissolved (DOC) (Filtered)	mg/L	0.2	3.6	5	4.2	6.8	39.1	2.2	2.8	1.7	1.3	1.7
Oxygen Demand - Biological (BOD)	mg/L				-	-	-	-	-	-	-	-
Sulphate (Filtered)	mg/L	1	326	500	311	275	396	365	376	419	426	390
Ammonia	mg/L	0.01			0.04	<0.01	0.05	0.06	0.1	0.05	0.06	0.02
Nitrate (as N)	mg/L	0.05	2.7	10	0.09	0.07	< 0.05	0.09	< 0.05	< 0.05	0.08	0.13
Conductivity (lab)	µS/cm	1			1,090	1,070	1,060	1,050	1,110	1,070	1,080	1,030
pH (Lab)	-			6.5-8.5	8.07	8.07	8.05	8.09	8.03	7.95	7.86	7.88
Field												
DO (Field)	mg/L				7.1	7.54	9.05	10.12	9.95	6.6	8.46	6.41
Redox Potential (Field)	mV				12	129	11	130	148	112	64	252
Temp (Field)	°C				22.9	12.9	13	7.3	7	6.8	8.7	9.2
Conductivity (field)	µS/cm				1,160	1,060	1,060	1,020	870	1,070	700	748
pH (Field)	-			6.5-8.5	7.72	7.52	7.8	8.11	7.93	7.61	8.4	7.72

Unit RDL 2011-05-01 2012-05-01 2012-01-01 2013-06-04 2013-12-05 2014-10-27 2015-10-28 2016-04-01 2016-10-01 2017-06-0 Metals		RUC	ODWQS 98-1-N	1 98-1-M	98-1-M	98-1-M	98-1-M	98-1-M	98-1-M	98-1-M	98-1-M	98-1-M	98-1-M
Metals Image: Imag	U	Init RDL	2011-0	5-01 2012-05-01	2012-11-01	2013-06-04	2013-12-05	2014-05-12	2014-10-27	2015-10-28	2016-04-01	2016-10-01	2017-06-07
Barium (Filtered) µg/L 1 267 1000 61 54 69 55 73 65 63 64 66 66 68 Boron (Filtered) µg/L 5 2623 5000 280 223 273 228 218 239 280 254 247 275 277 Calcium (Filtered) µg/L 20 97,000 98,800 104,000 102,000 93,400 80,800 94,200 94,400 96,700 108,000 103,000 Choirde µg/L 50 142000 250000 23,000 21,900 23,000 21,800 19,800 19,700 19,900 16,500 18,400 14,900 Iron (Filtered) µg/L 1 30 50 - <2	Metals								·				
Boron (Filtered) µg/L 5 2623 5000 280 223 273 228 218 239 280 254 247 275 277 Calcium (Filtered) µg/L 20 97,000 98,800 104,000 102,000 93,400 80,800 94,200 94,400 96,700 105,000 103,000 Choiride µg/L 500 142000 23,000 21,800 19,800 19,700 19,800 19,700 18,400 14,400 44,900 Iron (Filtered) µg/L 5 166 300 <100	Barium (Filtered)	g/L 1 267	1000 6	1 54	69	55	73	65	63	64	66	66	68
Calcium (Filtered) µg/L 20 97,000 98,800 104,000 102,000 93,400 80,800 94,200 94,400 96,700 105,000 103,00 Chloride µg/L 500 142000 250000 23,000 21,900 23,000 21,800 19,800 19,700 19,900 16,500 18,200 18,400 14,900 Iron (Filtered) µg/L 1 30 50 - 2 4 <2 2 2 12 <2 2 7 <1 Magnesium (Filtered) µg/L 20 27,000 26,200 27,300 28,200 25,400 23,400 25,100 24,800 26,300 25,700 28,800 Sodium (Filtered) µg/L 20 27,000 26,200 27,300 28,200 25,400 23,400 25,100 24,800 26,300 25,700 28,800 Sodium (Filtered) µg/L 200 114200 200000 23,000 20,000 20,500	Boron (Filtered)	g/L 5 2623	5000 28	30 223	273	228	218	239	280	254	247	275	277
Chloride µg/L 500 142000 250000 23,000 21,900 23,000 21,800 19,800 19,700 19,900 16,500 18,200 18,400 14,900 Iron (Filtered) µg/L 5 166 300 <100	Calcium (Filtered)	g/L 20	97,	000 98,800	104,000	102,000	93,400	80,800	94,200	94,400	96,700	105,000	103,000
Iron (Filtered) µg/L 5 166 300 <100 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10	Chloride µ	g/L 500 142000	250000 23,	000 21,900	23,000	21,800	19,800	19,700	19,900	16,500	18,200	18,400	14,900
Manganese (Filtered) µg/L 1 30 50 - <2 4 <2 2 <2 12 <2 <2 <2 <1 Magnesium (Filtered) µg/L 20 27,000 26,200 27,300 28,200 25,400 23,400 25,100 24,800 26,300 25,700 28,600 Sodium (Filtered) µg/L 200 114200 200000 23,000 20,500 22,400 23,800 20,500 20,100 20,800 21,700 21,300 23,700 Inorganics	Iron (Filtered)	g/L 5 166	300 <1	00 <10	<10	<10	<10	<10	<10	<10	<10	<10	<5
Magnesium (Filtered) µg/L 20 27,000 26,200 27,300 28,200 25,400 23,400 25,100 24,800 26,300 25,700 28,600 Sodium (Filtered) µg/L 200 114200 200000 23,000 20,500 22,400 23,800 20,500 20,100 20,800 21,700 21,300 23,700 Inorganics	Manganese (Filtered)	g/L 1 30	50	- <2	4	<2	2	<2	12	<2	<2	7	<1
Sodium (Filtered) µg/L 200 114200 20,000 20,000 20,500 22,400 23,800 20,500 20,100 20,800 21,700 21,300 23,700 Inorganics	Magnesium (Filtered)	g/L 20	27,	000 26,200	27,300	28,200	25,400	23,400	25,100	24,800	26,300	25,700	28,600
Inorganics moll 5 371 500 264 306 301 279 293 265 273 281 279 343 299	Sodium (Filtered)	g/L 200 114200	200000 23,	000 20,000	20,500	22,400	23,800	20,500	20,100	20,800	21,700	21,300	23,700
Alkalinity (as CaCO3) mg/l 5 371 500 264 306 301 279 293 265 273 281 279 343 299	Inorganics												
	Alkalinity (as CaCO3) m	ng/L 5 371	500 26	306 306	301	279	293	265	273	281	279	343	299
Hardness (as CaCO3) (Filtered) mg/L 1 453 500 - 355 372 371 338 298 339 338 350 368 376	Hardness (as CaCO3) (Filtered) m	ng/L 1 453	500	- 355	372	371	338	298	339	338	350	368	376
Solids - Total Dissolved (TDS) mg/L 3 500 500 466 476 436 462 408 440 454 438 426 492 428	Solids - Total Dissolved (TDS) m	ng/L 3 500	500 46	6 476	436	462	408	440	454	438	426	492	428
Solids - Total Suspended (TSS) mg/L - 111 39 131 40 78 66 65 241 88 -	Solids - Total Suspended (TSS) m	ıg/L		- 111	39	131	40	78	66	65	241	88	-
Oxygen Demand - Chemical (COD) mg/L 5 9 <5 <5 7 <5 <5 <5 <5	Oxygen Demand - Chemical (COD) m	ng/L 5	9) <5	<5	<5	<5	7	<5	<5	<5	<5	<5
Organic Carbon - Dissolved (DOC) (Filtered) mg/L 0.2 3.6 5 1.2 1.7 1.5 1 2 5.8 1.1 1.4 1 2.8 3.4	Organic Carbon - Dissolved (DOC) (Filtered) m	ng/L 0.2 3.6	5 1	.2 1.7	1.5	1	2	5.8	1.1	1.4	1	2.8	3.4
Oxygen Demand - Biological (BOD) mg/L - <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5	Oxygen Demand - Biological (BOD) m	ıg/L		- <5	<5	<5	<5	<5	<5	<5	<5	<5	-
Sulphate (Filtered) mg/L 1 326 500 94 102 101 98.6 99.2 95.2 94.6 93.8 104 109 80	Sulphate (Filtered) m	ıg/L 1 326	500 9	4 102	101	98.6	99.2	95.2	94.6	93.8	104	109	80
Ammonia mg/L 0.01 < 0.05 <0.02 <0.02 <0.02 0.04 <0.02 0.05 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <	Ammonia m	ng/L 0.01	<0	.05 <0.02	< 0.02	<0.02	0.04	<0.02	0.05	<0.02	<0.02	<0.02	<0.01
Nitrate (as N) mg/L 0.05 2.7 10 <0.1 <0.05 <0.25 <0.25 <0.1 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <th< td=""><td>Nitrate (as N) m</td><td>ng/L 0.05 2.7</td><td>10 <(</td><td>0.1 <0.05</td><td>< 0.05</td><td><0.25</td><td><0.25</td><td><0.1</td><td><0.1</td><td><0.25</td><td><0.25</td><td><0.25</td><td>0.12</td></th<>	Nitrate (as N) m	ng/L 0.05 2.7	10 <(0.1 <0.05	< 0.05	<0.25	<0.25	<0.1	<0.1	<0.25	<0.25	<0.25	0.12
Conductivity (lab) µS/cm 1 758 756 749 789 765 750 791 730 740 812 779	Conductivity (lab)	S/cm 1	75	58 756	749	789	765	750	791	730	740	812	779
PH (Lab) - 6.5-8.5 7.93 8.01 8.18 7.84 7.95 8.18 7.86 7.77 7.88 7.17 7.98	pH (Lab) -		6.5-8.5 7.	93 8.01	8.18	7.84	7.95	8.18	7.86	7.77	7.88	7.17	7.98
Field	Field												
DO (Field) mg/L 9 8 6.8 8.19	DO (Field) m	ıg/L		· -	-	-	-	-	-	-	8	6.8	8.19
Redox Potential (Field) mV mV - - - - - - - 20	Redox Potential (Field) m	۱V		· -	-	-	-	-	-	-	-	-	20
Temp (Field) °C - - - - - - 9.1 9.6 14.7	Temp (Field)	C			-	-	-	-	-	-	9.1	9.6	14.7
Conductivity (field) µS/cm - - - - - - 754 710 850	Conductivity (field)	S/cm			-	-	-	-	-	-	754	710	850
pH (Field) - 6.5-8.5 - - - - - - 7.1 7.26	pH (Field) -		6.5-8.5		-	-	-	-	-	-	-	7.1	7.26

			RUC	ODWQS	98-1-M						
	Unit	RDL			2017-10-04	2018-05-28	2018-11-15	2019-04-15	2019-11-11	2020-04-20	2020-11-09
Metals											
Barium (Filtered)	µg/L	1	267	1000	65	66	66	59	55	71	69
Boron (Filtered)	µg/L	5	2623	5000	278	295	264	251	267	289	283
Calcium (Filtered)	µg/L	20			92,900	92,900	94,700	84,700	82,900	94,000	101,000
Chloride	µg/L	500	142000	250000	15,200	17,700	17,500	16,600	17,000	18,100	17,600
Iron (Filtered)	µg/L	5	166	300	7	<5	<5	<5	<5	<5	13
Manganese (Filtered)	µg/L	1	30	50	3	<1	<1	<1	<1	<1	<1
Magnesium (Filtered)	µg/L	20			27,700	29,300	27,200	25,100	27,500	28,100	27,600
Sodium (Filtered)	µg/L	200	114200	200000	19,800	23,700	21,800	19,400	21,600	21,400	20,200
Inorganics											
Alkalinity (as CaCO3)	mg/L	5	371	500	282	270	260	254	258	247	243
Hardness (as CaCO3) (Filtered)	mg/L	1	453	500	346	353	349	315	320	350	366
Solids - Total Dissolved (TDS)	mg/L	3	500	500	414	366	381	374	371	363	368
Solids - Total Suspended (TSS)	mg/L				-	-	-	-	-	-	-
Oxygen Demand - Chemical (COD)	mg/L	5			<5	<5	8	9	10	<5	<5
Organic Carbon - Dissolved (DOC) (Filtered)	mg/L	0.2	3.6	5	4.6	5.1	4	2.8	2.5	2.9	1.5
Oxygen Demand - Biological (BOD)	mg/L				-	-	-	-	-	-	-
Sulphate (Filtered)	mg/L	1	326	500	77	95	94	93	98	90	97
Ammonia	mg/L	0.01			0.02	0.02	0.03	0.04	0.03	0.02	0.01
Nitrate (as N)	mg/L	0.05	2.7	10	< 0.05	0.07	0.07	0.08	< 0.05	0.11	0.12
Conductivity (lab)	µS/cm	1			752	705	731	718	715	698	709
pH (Lab)	-			6.5-8.5	7.96	8.13	8.04	8.08	7.99	7.84	7.92
Field											
DO (Field)	mg/L				4.45	8.45	7.24	7.35	8.11	8.6	8.46
Redox Potential (Field)	mV				115	3	117	135	99	49	253
Temp (Field)	°C				11.1	13	8.3	7	6.8	9.2	9.7
Conductivity (field)	µS/cm				770	760	700	640	720	600	546
pH (Field)	-			6.5-8.5	7.44	7.52	7.94	7.72	7.8	8.3	7.45

Unit RDL 2011-05-01 2012-05-01 2012-11-01 2013-12-05 2014-05-12 2014-06-72 2015-04-77 2015-04-77 2016-04-01 <		RUC	ODWQS 98-2-L	98-2-L 9	98-2-L								
Metals pg/L 1 267 100 16 15 14 16 16 17 15 15 16 177 Barium (Filtered) µg/L 5 2623 5000 1,700 1,850 1,560 1,470 1,760 1,690 1,650 1,830 1,670 1,670 Calcium (Filtered) µg/L 20 290,000 257,000 278,000 322,000 251,000 246,000 311,000 273,000 295,000 273,000 295,000 273,000 295,000 273,000 295,000 273,000 295,000 273,000 295,000 273,000 296,000 48,400 62,800 51,100 50,900 52,700 54,300 61,000 49,900 62,800 51,100 19 1,610 747 501 44 44 Manganese (Filtered) µg/L 1 30 50 - 70 73 35 77 20 70 77 61 34 44 44	Unit	Unit RDL	2011-05-01	2012-05-01 2	2012-11-01	2013-06-04	2013-12-05	2014-05-12	2014-10-27	2015-04-07	2015-10-27	2016-04-01	2016-10-01
Barium (Filtered) µg/L 1 267 1000 16 15 14 16 16 17 15 15 15 16 17 Boron (Filtered) µg/L 5 263 5000 1,700 1,600 1,850 1,560 1,470 1,700 1,690 316,000 246,000 311,000 273,000 <td>Metals</td> <td></td> <td></td> <td>· · ·</td> <td></td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td>	Metals			· · ·		-	-	-	-	-	-	-	-
Born (Filtered) µg/L 5 2623 5000 1,700 1,600 1,850 1,560 1,470 1,760 1,690 1,650 1,830 1,670 1,670 Calcium (Filtered) µg/L 20 290,000 257,000 278,000 322,000 257,000 246,000 311,000 273,000 295,000 296,000 296,0	Barium (Filtered) µg/L	µg/L 1 267	1000 16	15	14	16	16	17	15	15	15	16	17
Calcium (Filtered) µg/L 20 290,000 257,000 278,000 322,000 270,000 251,000 341,000 273,000 295,000 273,00 295,000 273,00 295,000 295,000 295,000 295,000 295,000 295,000 295,000 295,000 295,000 295,000 295,000 295,000 <	Boron (Filtered) µg/L	μg/L 5 2623	5000 1,700	1,600	1,850	1,560	1,470	1,760	1,690	1,650	1,830	1,670	1,670
Chloride µg/L 500 142000 250000 39,000 44,900 62,800 51,100 50,900 52,700 54,300 61,000 49,900 62,400 58,400 Iron (Filtered) µg/L 5 166 300 1,600 1,140 165 1,480 <10	Calcium (Filtered) µg/L	μg/L 20	290,000	257,000	278,000	322,000	270,000	251,000	246,000	311,000	273,000	295,000	273,000
Iron (Filtered) µg/L 5 166 300 1,600 1,840 1,140 165 1,480 <10 119 1,610 747 501 433 Manganese (Filtered) µg/L 1 30 50 - 70 73 355 77 20 70 77 61 34 44 Magnesium (Filtered) µg/L 20 - 120,000 106,000 114,000 123,000 104,000 94,100 117,000 105,000 114,000 103,000 Sodium (Filtered) µg/L 200 114200 200000 81,000 72,600 76,200 73,000 74,700 63,700 75,200 77,400 76,200 76,000 73,500 74,700 63,700 75,200 77,400 76,200 76,200 76,200 76,200 76,200 76,200 74,700 63,700 75,200 77,400 77,400 77,400 77,400 77,400 77,400 77,400 77,400 77,400 77,4	Chloride µg/L	μg/L 500 142000	250000 39,000	44,900	62,800	51,100	50,900	52,700	54,300	61,000	49,900	62,400	58,400
Marganese (Filtered) µg/L 1 30 50 - 70 73 35 77 20 70 77 61 34 44 Magnesium (Filtered) µg/L 20 120,000 106,000 114,000 123,000 108,000 104,000 94,100 117,000 105,000 114,000 103,000 Sodium (Filtered) µg/L 200 114200 200000 81,000 72,600 75,600 73,500 74,700 63,700 75,200 77,400 76,200 Inorganics	Iron (Filtered) µg/L	μg/L 5 166	300 1,600	1,840	1,140	165	1,480	<10	119	1,610	747	501	433
Magnesium (Filtered) µg/L 20 120,000 106,000 114,000 123,000 108,000 104,000 94,100 117,000 105,000 114,000 103,00 Sodium (Filtered) µg/L 200 114200 200000 81,000 72,600 76,200 75,600 73,500 74,700 63,700 75,200 77,200 77,400 76,200 Inorganics	Manganese (Filtered) µg/L	μg/L 1 30	- 50	70	73	35	77	20	70	77	61	34	44
Sodium (Filtered) µg/L 200 114200 200000 81,000 72,600 76,200 73,500 74,700 63,700 75,200 77,200 77,400 76,200 76,200 73,500 74,700 63,700 75,200 77,200 77,400 76,200 76,200 73,500 74,700 63,700 75,200 77,200 77,400 76,200 76,200 73,500 74,700 63,700 75,200 77,200 77,400 76,200 Inorganics - - - - - - - - - - - - - - - 1,100 1,120 1,060 1,000 1,260 1,110 1,210 1,110 1,740 1,740 1,740 1,740 1,740 1,740 1,720 1,830 1,770 1,740 1,740 1,720 1,830 1,700 1,740 1,740 1,720 1,830 1,700 1,740 1,740 1,720 1,830 1,700 1,740	Magnesium (Filtered) µg/L	μg/L 20	120,000	106,000	114,000	123,000	108,000	104,000	94,100	117,000	105,000	114,000	103,000
Inorganics mg/L 5 371 500 19 203 185 200 210 199 198 218 212 223 264 Hardness (as CaCO3) (Filtered) mg/L 1 453 500 - 1,080 1,160 1,310 1,120 1,060 1,000 1,260 1,110 1,210 1,110 Solids - Total Dissolved (TDS) mg/L 3 500 500 1,330 1,660 1,700 1,800 1,710 1,720 1,830 1,700 1,740 Solids - Total Dissolved (TDS) mg/L 3 500 500 1,330 1,660 1,700 1,800 1,710 1,720 1,830 1,700 1,740 Solids - Total Suspended (TSS) mg/L 5 - 22 17 33 20 31 30 14 16 16 15 Oxygen Demand - Chemical (COD) mg/L 5	Sodium (Filtered) µg/L	μg/L 200 114200	200000 81,000	72,600	76,200	75,600	73,500	74,700	63,700	75,200	77,200	77,400	76,200
Alkalinity (as CaCO3) mg/L 5 371 500 19 203 185 200 210 199 198 218 212 223 264 Hardness (as CaCO3) (Filtered) mg/L 1 453 500 - 1,080 1,160 1,310 1,120 1,060 1,000 1,260 1,110 1,210 1,110 Solids - Total Dissolved (TDS) mg/L 3 500 500 1,330 1,660 1,700 1,800 1,740 1,710 1,720 1,830 1,700 1,740 Solids - Total Suspended (TSS) mg/L 3 500 500 1,330 1,660 1,700 1,800 1,710 1,720 1,830 1,700 1,740 Solids - Total Suspended (TSS) mg/L 5 - 22 17 33 20 31 30 14 16 16 15 Oxygen Demand - Chemical (COD) mg/L 5 4 5 6 <5	Inorganics												
Hardness (as CaCO3) (Filtered) mg/L 1 453 500 - 1,080 1,160 1,310 1,120 1,060 1,000 1,260 1,110 1,210 1,110 Solids - Total Dissolved (TDS) mg/L 3 500 500 1,330 1,660 1,700 1,800 1,710 1,720 1,830 1,700 1,740 Solids - Total Suspended (TSS) mg/L - 22 17 33 20 31 30 14 16 16 15 Oxygen Demand - Chemical (COD) mg/L 5	Alkalinity (as CaCO3) mg/L	mg/L 5 371	500 19	203	185	200	210	199	198	218	212	223	264
Solids - Total Dissolved (TDS) mg/L 3 500 500 1,330 1,660 1,700 1,800 1,710 1,720 1,830 1,700 1,730 1,740 Solids - Total Suspended (TSS) mg/L - 22 17 33 20 31 30 14 16 16 15 Oxygen Demand - Chemical (COD) mg/L 5 <4 <5 6 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5	Hardness (as CaCO3) (Filtered) mg/L	mg/L 1 453	- 500	1,080	1,160	1,310	1,120	1,060	1,000	1,260	1,110	1,210	1,110
Solids - Total Suspended (TSS) mg/L - - 22 17 33 20 31 30 14 16 16 15 Oxygen Demand - Chemical (COD) mg/L 5 - 22 17 33 20 31 30 14 16 16 15 Oxygen Demand - Chemical (COD) mg/L 5 - 6 <5	Solids - Total Dissolved (TDS) mg/L	mg/L 3 500	500 1,330	1,660	1,700	1,800	1,740	1,710	1,720	1,830	1,700	1,730	1,740
Oxygen Demand - Chemical (COD) mg/L 5 <4 <5 6 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5	Solids - Total Suspended (TSS) mg/L	mg/L	-	22	17	33	20	31	30	14	16	16	15
	Oxygen Demand - Chemical (COD) mg/L	mg/L 5	<4	<5	6	<5	6	<5	<5	<5	<5	<5	<5
Urganic Carbon - Dissolved (DUC) (Filtered) mg/L 0.2 3.0 5 0.9 3.0 3.0 2 2.3 1.9 1.2 2.1 1.2 0.9 1.9	Organic Carbon - Dissolved (DOC) (Filtered) mg/L	mg/L 0.2 3.6	5 0.9	3.6	3.6	2	2.3	1.9	1.2	2.1	1.2	0.9	1.9
Oxygen Demand - Biological (BOD) mg/L - <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5	Oxygen Demand - Biological (BOD) mg/L	mg/L	-	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Sulphate (Filtered) mg/L 1 326 500 1,000 1,090 1,240 1,150 1,100 998 976 1,100 971 1,130 1,020	Sulphate (Filtered) mg/L	mg/L 1 326	500 1,000	1,090	1,240	1,150	1,100	998	976	1,100	971	1,130	1,020
Ammonia mg/L 0.01 0.48 0.36 0.4 0.12 0.4 0.07 0.19 0.29 0.12 0.2 0.1	Ammonia mg/L	mg/L 0.01	0.48	0.36	0.4	0.12	0.4	0.07	0.19	0.29	0.12	0.2	0.1
Nitrate (as N) mg/L 0.05 2.7 10 <0.1 <0.05 <0.5 <0.5 <0.5 <0.25 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	Nitrate (as N) mg/L	mg/L 0.05 2.7	10 <0.1	< 0.05	<0.1	<0.5	<0.5	<0.5	<0.5	<0.25	<0.5	<0.5	<0.5
Conductivity (lab) µS/cm 1 2,210 2,000 1,910 2,250 2,130 2,080 2,220 2,220 2,140 2,200 2,160	Conductivity (lab) µS/cm	μS/cm 1	2,210	2,000	1,910	2,250	2,130	2,080	2,220	2,220	2,140	2,200	2,160
PH (Lab) - 6.5-8.5 7.76 7.9 8.13 7.85 7.91 7.96 7.76 8.23 7.87 8.04 6.91	pH (Lab) -	-	6.5-8.5 7.76	7.9	8.13	7.85	7.91	7.96	7.76	8.23	7.87	8.04	6.91
Field	Field												
DO (Field) mg/L 8.7 5.7	DO (Field) mg/L	mg/L	-	-	-	-	-	-	-	-	-	8.7	5.7
Redox Potential (Field) mV mV - <td>Redox Potential (Field) mV</td> <td>mV</td> <td>-</td>	Redox Potential (Field) mV	mV	-	-	-	-	-	-	-	-	-	-	-
Temp (Field) °C - - - - - - - 12.1 9.3	Temp (Field) °C	°C S	-	-	-	-	-	-	-	-	-	12.1	9.3
Conductivity (field) µS/cm - - - - - - 2,205 1,857	Conductivity (field) µS/cm	µS/cm	-	-	-	-	-	-	-	-	-	2,205	1,857
pH (Field) - 6.5-8.5 - - - - - 7.6 7	pH (Field) -	-	6.5-8.5 -	-	-	-	-	-	-	-	-	7.6	7

			RUC	ODWQS	98-2-L							
	Unit	RDL			2017-06-07	2017-10-04	2018-05-28	2018-11-15	2019-04-15	2019-11-11	2020-04-20	2020-11-09
Metals												
Barium (Filtered)	µg/L	1	267	1000	13	13	13	13	12	15	14	14
Boron (Filtered)	µg/L	5	2623	5000	1,710	1,900	2,030	1,860	1,770	1,940	2,040	2,000
Calcium (Filtered)	µg/L	20			267,000	280,000	283,000	301,000	277,000	286,000	306,000	314,000
Chloride	µg/L	500	142000	250000	53,300	57,300	70,000	71,600	72,500	61,500	79,800	81,400
Iron (Filtered)	µg/L	5	166	300	<5	351	249	516	479	2,170	1,030	171
Manganese (Filtered)	µg/L	1	30	50	4	40	20	68	52	76	60	40
Magnesium (Filtered)	µg/L	20			111,000	118,000	125,000	117,000	112,000	120,000	122,000	117,000
Sodium (Filtered)	µg/L	200	114200	200000	77,300	72,000	84,200	83,500	69,400	77,600	78,700	78,200
Inorganics												
Alkalinity (as CaCO3)	mg/L	5	371	500	221	218	242	210	212	213	222	216
Hardness (as CaCO3) (Filtered)	mg/L	1	453	500	1,120	1,180	1,220	1,230	1,150	1,210	1,270	1,270
Solids - Total Dissolved (TDS)	mg/L	3	500	500	1,180	1,240	1,130	1,200	1,200	1,190	1,150	1,150
Solids - Total Suspended (TSS)	mg/L				-	-	-	-	-	-	-	-
Oxygen Demand - Chemical (COD)	mg/L	5			8	<5	<5	<5	6	8	<5	<5
Organic Carbon - Dissolved (DOC) (Filtered)	mg/L	0.2	3.6	5	5.3	12.2	1.5	2.6	2.2	1.5	1.6	0.3
Oxygen Demand - Biological (BOD)	mg/L				-	-	-	-	-	-	-	-
Sulphate (Filtered)	mg/L	1	326	500	811	808	151	955	642	1,050	966	980
Ammonia	mg/L	0.01			0.07	0.3	0.1	0.17	0.09	0.34	0.29	0.06
Nitrate (as N)	mg/L	0.05	2.7	10	0.49	<0.05	0.25	0.23	0.28	<0.5	< 0.05	0.34
Conductivity (lab)	µS/cm	1			2,140	2,250	2,040	2,170	2,170	2,160	2,090	2,090
pH (Lab)	-			6.5-8.5	7.64	7.74	7.72	7.77	7.87	7.69	7.62	7.57
Field												
DO (Field)	mg/L				7.25	6.2	5.94	5.8	4	2.79	8.56	3.25
Redox Potential (Field)	mV				33	125	43	135	155	112	84	248
Temp (Field)	°C				16.3	12.4	12.5	8.1	8	8.2	7.8	9.2
Conductivity (field)	µS/cm				2,400	1,930	2,300	1,650	1,070	2,100	1,400	1,621
pH (Field)	-			6.5-8.5	7.16	7.04	7.09	7.56	7.03	7.05	7.63	7.1

			RUC	ODWQS	98-2-M	98-2-M	98-2-M	98-2-M	98-2-M						
	Unit	RDL			2011-05-01	2012-05-01	2012-11-01	2013-06-04	2013-12-05	2014-05-12	2014-10-27	2015-04-08	2015-10-28	2016-04-01	2016-10-01
Metals						·		-	·	·	· · · · · · · · · · · · · · · · · · ·	-		· · · · · · · · · · · · · · · · · · ·	
Barium (Filtered)	µg/L	1	267	1000	30	25	29	28	29	28	29	28	27	30	24
Boron (Filtered)	µg/L	5	2623	5000	400	248	413	378	296	331	374	404	441	337	563
Calcium (Filtered)	µg/L	20			74,000	63,600	71,500	73,600	63,300	55,200	60,600	70,100	66,800	69,000	70,200
Chloride	µg/L	500	142000	250000	14,000	11,100	12,700	13,900	13,400	11,700	13,700	15,600	13,900	15,800	15,900
Iron (Filtered)	µg/L	5	166	300	300	<10	<10	62	<10	<10	52	28	<10	<10	29
Manganese (Filtered)	µg/L	1	30	50	-	54	47	6	6	27	13	15	12	7	17
Magnesium (Filtered)	µg/L	20			27,000	21,000	25,400	28,100	24,000	19,800	22,200	26,200	25,700	25,600	28,200
Sodium (Filtered)	µg/L	200	114200	200000	22,000	15,700	26,600	19,600	18,100	15,000	15,300	28,600	26,800	19,800	45,600
Inorganics															
Alkalinity (as CaCO3)	mg/L	5	371	500	235	250	240	224	226	193	197	242	225	227	271
Hardness (as CaCO3) (Filtered)	mg/L	1	453	500	-	245	283	299	257	219	243	283	273	278	291
Solids - Total Dissolved (TDS)	mg/L	3	500	500	398	300	370	328	322	326	358	362	1,770	340	384
Solids - Total Suspended (TSS)	mg/L				-	238	286	112	72	32	20	115	14	76	124
Oxygen Demand - Chemical (COD)	mg/L	5			7	<5	<5	<5	13	7	<5	<5	<5	<5	<5
Organic Carbon - Dissolved (DOC) (Filtered)	mg/L	0.2	3.6	5	0.8	7.2	4	<1	2.1	6.2	1.7	1.1	3.2	1.2	1.8
Oxygen Demand - Biological (BOD)	mg/L				-	25	<5	<5	<5	<5	<5	<5	<5	<5	<5
Sulphate (Filtered)	mg/L	1	326	500	70	57.9	83.7	80.2	79.8	60.3	69	96.4	95.1	87.6	159
Ammonia	mg/L	0.01			0.12	2.06	0.42	0.04	0.09	0.02	<0.02	0.14	0.06	<0.02	0.32
Nitrate (as N)	mg/L	0.05	2.7	10	<0.1	< 0.05	< 0.05	0.12	<0.1	0.36	0.28	<0.25	0.58	0.36	<0.25
Conductivity (lab)	µS/cm	1			637	581	592	648	594	522	597	661	646	626	789
pH (Lab)	-			6.5-8.5	7.91	7.8	8.1	7.91	7.96	8.02	7.99	8.22	8.07	8.06	7.52
Field															
DO (Field)	mg/L				-	-	-	-	-	-	-	-	-	8.5	6.6
Redox Potential (Field)	mV				-	-	-	-	-	-	-	-	-	-	-
Temp (Field)	°C				-	-	-	-	-	-	-	-	-	10.1	9.5
Conductivity (field)	µS/cm				-	-	-	-	-	-	-	-	-	630	565
pH (Field)	-			6.5-8.5	-	-	-	-	-	-	-	-	-	7.9	7.1

			RUC	ODWQS	98-2-M							
	Unit	RDL			2017-06-07	2017-10-04	2018-05-28	2018-11-15	2019-04-15	2019-11-11	2020-04-20	2020-11-09
Metals												
Barium (Filtered)	µg/L	1	267	1000	27	29	32	31	22	27	31	31
Boron (Filtered)	µg/L	5	2623	5000	294	342	378	338	432	345	351	360
Calcium (Filtered)	µg/L	20			59,300	63,400	69,300	68,900	69,300	61,600	68,700	72,300
Chloride	µg/L	500	142000	250000	11,700	13,400	16,000	15,600	14,900	16,000	17,900	17,400
Iron (Filtered)	µg/L	5	166	300	<5	5	<5	13	58	5	5	<5
Manganese (Filtered)	µg/L	1	30	50	<1	1	1	<1	14	1	<1	<1
Magnesium (Filtered)	µg/L	20			23,200	26,400	29,100	26,400	28,600	26,800	27,200	26,700
Sodium (Filtered)	µg/L	200	114200	200000	14,700	15,100	17,900	18,200	30,900	18,000	17,000	16,900
Inorganics												
Alkalinity (as CaCO3)	mg/L	5	371	500	193	211	209	200	212	205	192	191
Hardness (as CaCO3) (Filtered)	mg/L	1	453	500	244	267	293	281	291	264	284	290
Solids - Total Dissolved (TDS)	mg/L	3	500	500	298	331	288	306	378	328	293	304
Solids - Total Suspended (TSS)	mg/L				-	-	-	-	-	-	-	-
Oxygen Demand - Chemical (COD)	mg/L	5			11	<5	<5	<5	11	6	<5	<5
Organic Carbon - Dissolved (DOC) (Filtered)	mg/L	0.2	3.6	5	17.3	5.4	0.6	2.7	1.4	1.9	1.5	0.8
Oxygen Demand - Biological (BOD)	mg/L				-	-	-	-	-	-	-	-
Sulphate (Filtered)	mg/L	1	326	500	55	65	80	76	137	103	74	80
Ammonia	mg/L	0.01			0.03	<0.01	0.01	0.02	0.14	0.05	<0.01	0.01
Nitrate (as N)	mg/L	0.05	2.7	10	0.16	< 0.05	0.11	0.1	0.06	< 0.05	0.11	0.06
Conductivity (lab)	µS/cm	1			541	602	556	590	725	632	566	587
pH (Lab)	-			6.5-8.5	7.98	8.08	8.04	8	8.02	7.99	7.76	7.84
Field												
DO (Field)	mg/L				12.12	10.02	7.1	6.43	4.13	6.16	7.63	5.55
Redox Potential (Field)	mV				5	101	21	113	137	99	72	239
Temp (Field)	°C				12.8	12	13.5	8.7	8	7.9	8.1	9.2
Conductivity (field)	µS/cm				640	530	660	590	640	590	6,108	464
pH (Field)	-			6.5-8.5	7.47	7.69	7.55	8.28	7.61	7.79	8.06	7.15

			RUC	ODWQS	98-3-L									
	Unit	RDL			2011-05-01	2012-05-02	2012-11-28	2013-06-04	2013-12-05	2014-05-12	2014-10-27	2015-04-08	2015-10-28	2016-04-01
Metals							·	-		-	·			
Barium (Filtered)	µg/L	1	267	1000	30	16	15	13	17	16	14	16	16	16
Boron (Filtered)	µg/L	5	2623	5000	640	534	596	572	620	602	625	617	577	519
Calcium (Filtered)	µg/L	20			74,000	70,100	71,100	79,400	71,700	66,600	70,100	72,800	70,400	75,200
Chloride	µg/L	500	142000	250000	6,000	5,360	4,210	5,030	4,440	4,400	5,070	5,640	4,240	6,040
Iron (Filtered)	µg/L	5	166	300	200	<10	<10	13	<10	<10	<10	<10	<10	<10
Manganese (Filtered)	µg/L	1	30	50	-	<2	<2	<2	<2	14	<2	25	48	11
Magnesium (Filtered)	µg/L	20			26,000	25,000	24,600	26,100	24,400	24,600	24,200	24,400	24,000	25,900
Sodium (Filtered)	µg/L	200	114200	200000	65,000	54,500	49,900	64,200	53,600	56,400	50,900	55,600	57,400	60,900
Inorganics														
Alkalinity (as CaCO3)	mg/L	5	371	500	164	172	146	182	165	152	150	164	167	187
Hardness (as CaCO3) (Filtered)	mg/L	1	453	500	-	278	279	306	280	268	275	282	275	294
Solids - Total Dissolved (TDS)	mg/L	3	500	500	488	540	476	500	482	498	474	430	504	482
Solids - Total Suspended (TSS)	mg/L				-	38	32	398	245	4,810	1,520	1,790	412	1,280
Oxygen Demand - Chemical (COD)	mg/L	5			<4	<5	<5	<5	<5	<5	<5	<5	<5	<5
Organic Carbon - Dissolved (DOC) (Filtered)	mg/L	0.2	3.6	5	0.5	1	1.2	43.5	1.5	4.5	0.7	2.1	2.6	0.7
Oxygen Demand - Biological (BOD)	mg/L				-	<5	<5	<5	<5	<5	<5	<5	<5	<5
Sulphate (Filtered)	mg/L	1	326	500	240	248	233	240	235	244	232	237	210.4	253
Ammonia	mg/L	0.01			< 0.05	<0.02	< 0.02	0.29	0.05	<0.02	<0.02	0.02	0.02	<0.02
Nitrate (as N)	mg/L	0.05	2.7	10	0.2	0.2	< 0.05	<0.25	0.32	0.12	<0.1	<0.25	0.11	<0.25
Conductivity (lab)	µS/cm	1			794	750	706	779	776	783	791	766	775	795
pH (Lab)	-			6.5-8.5	8.13	7.87	8.19	8.02	7.93	8.18	8.13	8.37	7.96	8.02
Field														
DO (Field)	mg/L				-	-	-	-	-	-	-	-	-	10
Redox Potential (Field)	mV				-	-	-	-	-	-	-	-	-	-
Temp (Field)	°C				-	-	-	-	-	-	-	-	-	8.8
Conductivity (field)	µS/cm				-	-	-	-	-	-	-	-	-	770
pH (Field)	-			6.5-8.5	-	-	-	-	-	-	-	-	-	8.5

			RUC	ODWQS	98-3-L								
	Unit	RDL			2016-10-01	2017-06-07	2017-10-04	2018-05-28	2018-11-15	2019-04-15	2019-11-11	2020-04-20	2020-11-09
Metals													
Barium (Filtered)	µg/L	1	267	1000	37	14	14	16	14	13	14	16	30
Boron (Filtered)	µg/L	5	2623	5000	599	572	582	627	555	547	599	589	586
Calcium (Filtered)	µg/L	20			65,400	66,500	65,200	70,900	70,400	67,000	65,700	71,200	77,400
Chloride	µg/L	500	142000	250000	6,070	4,900	5,000	6,400	6,100	5,900	5,400	6,700	6,700
Iron (Filtered)	µg/L	5	166	300	167	<5	5	6	7	18	33	<5	176
Manganese (Filtered)	µg/L	1	30	50	3	1	1	2	30	48	35	1	31
Magnesium (Filtered)	µg/L	20			22,400	25,100	25,900	28,800	25,900	23,900	26,000	27,100	25,300
Sodium (Filtered)	µg/L	200	114200	200000	58,300	60,600	55,300	64,500	61,900	57,700	62,700	65,900	65,200
Inorganics													
Alkalinity (as CaCO3)	mg/L	5	371	500	177	170	163	173	169	171	169	165	165
Hardness (as CaCO3) (Filtered)	mg/L	1	453	500	256	269	269	296	282	266	271	289	297
Solids - Total Dissolved (TDS)	mg/L	3	500	500	550	433	423	392	407	413	395	394	398
Solids - Total Suspended (TSS)	mg/L				1,330	-	-	-	-	-	-	-	-
Oxygen Demand - Chemical (COD)	mg/L	5			<5	5	<5	<5	24	8	6	10	<5
Organic Carbon - Dissolved (DOC) (Filtered)	mg/L	0.2	3.6	5	1.6	2.3	5.7	13.3	2.4	2.7	3	1.5	1.8
Oxygen Demand - Biological (BOD)	mg/L				<5	-	-	-	-	-	-	-	-
Sulphate (Filtered)	mg/L	1	326	500	246	187	184	218	219	219	219	215	219
Ammonia	mg/L	0.01			0.05	<0.01	<0.01	0.01	0.08	0.07	0.05	0.03	0.05
Nitrate (as N)	mg/L	0.05	2.7	10	<0.25	0.22	0.13	0.17	0.06	0.05	< 0.05	0.09	0.06
Conductivity (lab)	µS/cm	1			757	788	769	750	776	788	756	754	761
pH (Lab)	-			6.5-8.5	7.64	8.08	8.14	8.09	8.13	8.09	7.98	7.9	8.03
Field													
DO (Field)	mg/L				8.1	7.89	8.82	7.12	5.56	5.59	4.39	8.03	10.34
Redox Potential (Field)	mV				-	-61	97	-62	128	152	113	70	258
Temp (Field)	0°				9.6	14.9	13.6	15.5	9.3	8	8.3	8.9	11.5
Conductivity (field)	µS/cm				675	850	730	800	710	700	750	600	613
pH (Field)	-			6.5-8.5	7.9	7.56	7.81	7.74	8.16	7.96	7.42	8.34	7.8

			RUC	ODWQS	98-3-M	98-3-M	98-3-M	98-3-M	98-3-M	98-3-M	98-3-M	98-3-M	98-3-M	98-3-M
	Unit	RDL			2011-05-03	2012-05-02	2012-11-28	2013-06-04	2013-12-05	2014-05-12	2014-10-27	2015-04-07	2015-10-28	2016-04-01
Metals							· · · · · · · · · · · · · · · · · · ·	-	· · · · · · · · · · · · · · · · · · ·	·				
Barium (Filtered)	µg/L	1	267	1000	41	28	30	52	35	25	27	34	78	171
Boron (Filtered)	µg/L	5	2623	5000	260	237	282	256	262	244	280	261	244	39
Calcium (Filtered)	µg/L	20			71,000	75,000	68,500	70,700	66,400	60,300	62,300	62,200	60,800	145,000
Chloride	µg/L	500	142000	250000	12,000	12,300	11,500	10,800	11,100	10,700	10,400	12,000	10,500	51,300
Iron (Filtered)	µg/L	5	166	300	500	384	<10	164	309	<10	44	214	42	<10
Manganese (Filtered)	µg/L	1	30	50	-	54	82	42	37	14	189	58	84	<2
Magnesium (Filtered)	µg/L	20			29,000	28,000	27,500	29,300	26,700	26,500	27,500	26,400	25,600	9,300
Sodium (Filtered)	µg/L	200	114200	200000	13,000	24,600	12,500	19,400	18,000	15,200	11,500	15,000	11,100	42,300
Inorganics														
Alkalinity (as CaCO3)	mg/L	5	371	500	239	272	213	213	213	196	207	223	209	382
Hardness (as CaCO3) (Filtered)	mg/L	1	453	500	-	303	284	297	276	260	269	264	257	400
Solids - Total Dissolved (TDS)	mg/L	3	500	500	372	372	344	346	326	328	328	324	326	570
Solids - Total Suspended (TSS)	mg/L				-	352	47	104	37	64	24	34	16	532
Oxygen Demand - Chemical (COD)	mg/L	5			31	<5	<5	8	<5	5	88	<5	<5	<5
Organic Carbon - Dissolved (DOC) (Filtered)	mg/L	0.2	3.6	5	2.5	1.8	2.3	30.5	1.4	3.4	6.7	1.7	3.2	4.1
Oxygen Demand - Biological (BOD)	mg/L				-	<5	<5	<5	<5	<5	24	6	<5	<5
Sulphate (Filtered)	mg/L	1	326	500	61	74.4	94.1	83.8	92.7	88.6	88.2	74.9	81.6	29.8
Ammonia	mg/L	0.01			0.07	<0.02	0.03	0.05	0.04	0.02	4.62	0.84	0.05	<0.02
Nitrate (as N)	mg/L	0.05	2.7	10	<0.1	< 0.05	1.88	<0.1	<0.25	<0.1	<0.1	0.49	<0.1	3.46
Conductivity (lab)	µS/cm	1			596	633	579	571	601	587	639	589	563	902
pH (Lab)	-			6.5-8.5	7.99	8.09	8.07	7.94	7.81	8.12	7.81	8.19	7.94	7.95
Field														
DO (Field)	mg/L				-	-	-	-	-	-	-	-	-	6.9
Redox Potential (Field)	mV				-	-	-	-	-	-	-	-	-	-
Temp (Field)	°C				-	-	-	-	-	-	-	-	-	8.6
Conductivity (field)	µS/cm				-	-	-	-	-	-	-	-	-	591
pH (Field)	-			6.5-8.5	-	-	-	-	-	-	-	-	-	8.1

			RUC	ODWQS	98-3-M	98-3-M	98-3-M						
	Unit	RDL			2016-10-01	2017-06-07	2017-10-04	2018-05-28	2018-11-15	2019-04-15	2019-11-11	2020-04-20	2020-11-09
Metals						-	-			·	· · · · · · · · · · · · · · · · · · ·	-	
Barium (Filtered)	µg/L	1	267	1000	26	25	26	26	25	21	23	24	27
Boron (Filtered)	µg/L	5	2623	5000	275	251	264	284	257	237	264	272	272
Calcium (Filtered)	µg/L	20			61,800	61,100	60,100	63,400	63,700	58,600	57,700	63,400	69,200
Chloride	µg/L	500	142000	250000	10,300	9,000	9,200	10,800	11,000	10,000	9,600	11,000	10,500
Iron (Filtered)	µg/L	5	166	300	<10	<5	7	<5	<5	<5	<5	<5	<5
Manganese (Filtered)	µg/L	1	30	50	<2	<1	1	1	<1	<1	<1	1	1
Magnesium (Filtered)	µg/L	20			25,500	28,400	29,100	31,400	29,100	26,700	29,400	29,700	28,800
Sodium (Filtered)	µg/L	200	114200	200000	10,800	11,800	10,700	12,900	12,300	10,200	13,500	11,900	12,800
Inorganics													
Alkalinity (as CaCO3)	mg/L	5	371	500	226	200	197	199	198	187	188	209	178
Hardness (as CaCO3) (Filtered)	mg/L	1	453	500	259	269	270	288	279	256	265	281	291
Solids - Total Dissolved (TDS)	mg/L	3	500	500	334	314	313	278	303	297	289	283	290
Solids - Total Suspended (TSS)	mg/L				22	-	-	-	-	-	-	-	-
Oxygen Demand - Chemical (COD)	mg/L	5			<5	<5	<5	<5	7	10	<5	<5	<5
Organic Carbon - Dissolved (DOC) (Filtered)	mg/L	0.2	3.6	5	1	7.6	3.9	10.4	1.9	2.3	2	1.5	0.9
Oxygen Demand - Biological (BOD)	mg/L				<5	-	-	-	-	-	-	-	-
Sulphate (Filtered)	mg/L	1	326	500	91.2	71	71	85	88	85	89	84	88
Ammonia	mg/L	0.01			<0.02	<0.01	<0.01	0.01	0.2	0.06	0.03	<0.01	0.03
Nitrate (as N)	mg/L	0.05	2.7	10	<0.25	0.11	<0.05	0.08	0.1	0.06	<0.05	0.13	0.36
Conductivity (lab)	µS/cm	1			566	571	569	537	585	573	558	546	560
pH (Lab)	-			6.5-8.5	7.71	8.09	8.21	8.12	8.04	8.12	8	7.84	8.04
Field													
DO (Field)	mg/L				6.1	10.21	7.09	8.78	8.33	10.41	7.38	8.65	5.15
Redox Potential (Field)	mV				-	-65	78	-53	111	132	102	44	250
Temp (Field)	°C				9.9	14.3	14.7	16.1	9.7	8	8.3	9.1	9.9
Conductivity (field)	µS/cm				514	590	530	590	550	540	630	490	440
pH (Field)	-			6.5-8.5	7.7	7.83	7.76	7.78	8.39	7.99	7.65	8.51	7.77

Table 6 - Groundwater Quality - Middle and Lower Bedrock

			RUC	ODWQS	BH16-1D								
	Unit	RDL			2016-10-01	2017-06-07	2017-10-04	2018-05-28	2018-11-15	2019-04-15	2019-11-11	2020-04-20	2020-11-09
Metals													
Barium (Filtered)	µg/L	1	267	1000	32	16	16	18	15	12	13	20	16
Boron (Filtered)	µg/L	5	2623	5000	542	565	555	634	550	544	549	601	569
Calcium (Filtered)	µg/L	20			63,300	63,100	61,600	67,100	64,000	60,700	58,700	70,000	73,500
Chloride	µg/L	500	142000	250000	19,900	11,600	14,300	15,300	16,800	16,000	18,500	18,900	19,200
Iron (Filtered)	µg/L	5	166	300	<10	<5	18	16	24	10	19	20	54
Manganese (Filtered)	µg/L	1	30	50	11	12	16	12	12	9	14	11	24
Magnesium (Filtered)	µg/L	20			36,000	38,700	38,700	43,200	39,100	37,700	39,100	41,900	38,700
Sodium (Filtered)	µg/L	200	114200	200000	26,600	23,100	19,700	24,200	22,500	19,600	21,400	22,400	20,400
Inorganics													
Alkalinity (as CaCO3)	mg/L	5	371	500	234	226	228	223	223	213	219	210	209
Hardness (as CaCO3) (Filtered)	mg/L	1	453	500	306	317	313	345	321	307	307	347	343
Solids - Total Dissolved (TDS)	mg/L	3	500	500	436	392	382	349	356	359	351	357	341
Solids - Total Suspended (TSS)	mg/L				2,230	-	-	-	-	-	-	-	-
Oxygen Demand - Chemical (COD)	mg/L	5			<5	5	<5	<5	<5	8	10	7	<5
Organic Carbon - Dissolved (DOC) (Filtered)	mg/L	0.2	3.6	5	2.9	15.1	1.5	1.4	1.9	2.2	1.7	1.6	1.4
Oxygen Demand - Biological (BOD)	mg/L				<5	-	-	-	-	-	-	-	-
Sulphate (Filtered)	mg/L	1	326	500	139	110	98	128	110	121	112	126	115
Ammonia	mg/L	0.01			0.03	0.02	0.04	0.05	0.05	0.08	0.05	0.06	0.05
Nitrate (as N)	mg/L	0.05	2.7	10	<0.25	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Conductivity (lab)	µS/cm	1			724	712	694	672	685	691	675	687	656
pH (Lab)	-			6.5-8.5	8.26	7.97	8.11	8.06	8	8.02	7.89	7.97	7.78
Field													
DO (Field)	mg/L				3.9	2.82	5.54	5.03	1.72	3.2	4.13	1.86	11.23
Redox Potential (Field)	mV				-	-10	148	43	104	146	131	160	78
Temp (Field)	°C				9.6	12.3	11.7	13.2	8.3	8	7.9	10.5	12.4
Conductivity (field)	µS/cm				573	780	660	740	680	640	660	750	823
pH (Field)	-			6.5-8.5	7	7.45	7.62	7.57	7.8	7.76	7.39	7.87	7.41

Table 6 - Groundwater Quality - Middle and Lower Bedrock

			RUC	ODWQS	BH16-1S							
	Unit	RDL			2017-06-07	2017-10-04	2018-05-28	2018-11-15	2019-04-15	2019-11-11	2020-04-20	2020-11-09
Metals												
Barium (Filtered)	µg/L	1	267	1000	95	99	106	105	92	90	107	112
Boron (Filtered)	µg/L	5	2623	5000	197	210	234	193	178	164	203	182
Calcium (Filtered)	µg/L	20			112,000	110,000	120,000	126,000	114,000	110,000	129,000	134,000
Chloride	µg/L	500	142000	250000	18,100	15,300	19,700	20,400	31,700	32,600	22,300	20,000
Iron (Filtered)	µg/L	5	166	300	<5	14	<5	7	<5	27	<5	32
Manganese (Filtered)	µg/L	1	30	50	12	28	1	17	<1	16	4	7
Magnesium (Filtered)	µg/L	20			23,800	24,000	26,700	24,400	20,300	20,600	20,800	19,600
Sodium (Filtered)	µg/L	200	114200	200000	30,500	26,300	35,600	32,700	37,500	39,800	44,500	32,800
Inorganics												
Alkalinity (as CaCO3)	mg/L	5	371	500	317	297	344	348	318	310	336	298
Hardness (as CaCO3) (Filtered)	mg/L	1	453	500	378	374	410	415	368	360	408	416
Solids - Total Dissolved (TDS)	mg/L	3	500	500	428	402	409	445	445	417	428	396
Solids - Total Suspended (TSS)	mg/L				-	-	-	-	-	-	-	-
Oxygen Demand - Chemical (COD)	mg/L	5			125	108	53	92	34	97	22	7
Organic Carbon - Dissolved (DOC) (Filtered)	mg/L	0.2	3.6	5	5.4	6.3	3.5	5.2	6	3.1	5.6	2.5
Oxygen Demand - Biological (BOD)	mg/L				-	-	-	-	-	-	-	-
Sulphate (Filtered)	mg/L	1	326	500	56	53	69	67	67	59	59	65
Ammonia	mg/L	0.01			<0.01	0.02	0.03	0.04	0.07	0.04	0.03	0.01
Nitrate (as N)	mg/L	0.05	2.7	10	< 0.05	0.09	0.2	0.36	0.8	0.55	1.26	0.59
Conductivity (lab)	µS/cm	1			779	730	781	843	843	795	814	758
pH (Lab)	-			6.5-8.5	7.86	7.99	7.99	7.9	7.95	7.87	7.85	7.87
Field												
DO (Field)	mg/L				9.67	9.49	11.11	7.41	6.42	5.03	10.31	4.07
Redox Potential (Field)	mV				15	141	47	116	157	135	154	69
Temp (Field)	°C				12.3	17.8	15.9	9.3	7	8.9	9.3	11
Conductivity (field)	µS/cm				1,220	760	830	790	770	840	880	728
pH (Field)	-			6.5-8.5	7.22	7.42	7.43	7.5	7.5	7.07	7.65	7.67

Table 7 - Groundwater Quality - VOCs

		ODWQS	00-1-L	00-1-M	00-1-U	97-1-L	97-1-M	97-1-U	97-2-L	97-2-U	97-3	98-1-L	98-1-M	98-1-U
	Unit RDL		2013-06-04	2013-06-04	2013-06-04	2013-06-04	2013-06-04	2013-06-04	2013-06-04	2013-06-04	2013-06-04	2013-06-04	2013-06-04	2013-06-04
BTEX			i											
Benzene	ug/I 0.5	1	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	ug/L 0.5	60	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	0.44	<0.2	<0.2	<0.2
Ethylhonzono	ug/L 0.5	140	<0.1	<0.2	-0.2	<0.1	-0.2	-0.2	-0.2	-0.2	<0.1	<0.2	-0.2	-0.2
Euryidenzene	µy/L 0.5	140	NO.1	~ 0.1	\U.1	~ 0.1	\U.1	<u.1< td=""><td>NO.1</td><td>NO.1</td><td>NO.1</td><td>~0.1</td><td><0.1</td><td>\U.1</td></u.1<>	NO.1	NO.1	NO.1	~ 0.1	<0.1	\U.1
Xylene I otal	µg/L 1.1	90	· ·	-	-	-	-	-	-	-	-	-	-	-
VOCs														
Acetone	µg/L 30		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Bromodichloromethane	µg/L 2		< 0.2	<0.2	<0.2	<0.2	<0.2	<0.2	< 0.2	<0.2	< 0.2	<0.2	<0.2	<0.2
Bromoform	ua/L 5		<0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1
Bromomethane	ug/l 0.5		<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Carbon tetrachloride	ug/L 0.2	2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Chlorebenzene	µg/L 0.2	2	<0.2	10.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	10.2	<0.2	<0.2	<0.2
Chlorobenzene	µg/L	00	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chloroform	µg/L 1		<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Chloroethane	µg/L		<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	< 0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Chloromethane	µg/L		<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	< 0.4	<0.4	<0.4	<0.4	< 0.4	<0.4
Dibromochloromethane	µg/L 2		<0.1	< 0.1	<0.1	<0.1	< 0.1	<0.1	< 0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibromochloropropane (DBCP)	ua/L		-	-	-	-	-	-	-	-	-	-	-	-
Dibromoethylene 12-trans-	ug/l		<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Dibromomethane			-0.2	-0.2	-0.2	-0.2	-0.2	-0.2	-0.2	-0.2	-0.2	-0.2	-0.2	-0.2
Distanshappens 1.0	H9/L 0.5	200												
Dichlorobenzene, 1,2-	µg/L 0.5	200	<0.1 +0.1	<0.1	<0.1	<u> </u>	<0.1	<u.1< td=""><td><u.1< td=""><td><u><u><u></u></u> <u></u> <u></u></u></td><td><u.1< td=""><td><u><u> </u></u></td><td><u.1< td=""><td><0.1</td></u.1<></td></u.1<></td></u.1<></td></u.1<>	<u.1< td=""><td><u><u><u></u></u> <u></u> <u></u></u></td><td><u.1< td=""><td><u><u> </u></u></td><td><u.1< td=""><td><0.1</td></u.1<></td></u.1<></td></u.1<>	<u><u><u></u></u> <u></u> <u></u></u>	<u.1< td=""><td><u><u> </u></u></td><td><u.1< td=""><td><0.1</td></u.1<></td></u.1<>	<u><u> </u></u>	<u.1< td=""><td><0.1</td></u.1<>	<0.1
UICNIOROBENZENE, 1,3-	µg/L 0.5		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dichlorobenzene, 1,4-	µg/L 0.5	5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dichlorodifluoromethane	µg/L 2		<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Dichloropropane, 1,3-	µg/L		-	-	-	-	-	-	-	-	-	-	-	
Dichloroethane, 1,1-	µg/L 0.5		< 0.3	<0.3	<0.3	< 0.3	<0.3	< 0.3	< 0.3	< 0.3	< 0.3	<0.3	< 0.3	<0.3
Dichloroethane, 1,2-	µg/L 0.5	5	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Dichloroethylene, 1.1-	ug/L	14	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Dichloroethylene 1.2-trans-	ug/L 0.5				-	-		-	-	-	-	-	-	
Dichloroethylene, 1.2 cis	ug/L 0.5		<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Dichloropropaga 1.2	ug/L 0.5		<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Dichloropropane, 1,2-	µy/L 0.5	_	<0.2	<0.2	<0.2	<0.2	<0.Z	~0.Z	~0.Z	<0.2	~0.Z	<0.2	~0.Z	~0.Z
Dichloropropane, 2,2-	µg/L		· ·		-	-	-	-	-	-	-	-		-
Dichloropropene, 1,1-	µg/L			-	-	-	-	-	-	-	-	-	-	-
Dichloropropene, 1,3-cis-	µg/L 0.5		<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Dichloropropene, 1,3-trans-	µg/L 0.5		< 0.3	<0.3	<0.3	<0.3	<0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	<0.3	<0.3
Dichloropropene, 1,3-(cis+trans)	µg/L 0.5		< 0.3	< 0.3	< 0.3	< 0.3	<0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Ethylene dibromide	µg/L 0.2		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1	<0.1	< 0.1	<0.1	<0.1	<0.1
Hexachlorobutadiene	µg/L		-	-	-	-	-	-	-	-	-	-	-	-
Hexane	ua/L 5		< 0.2	< 0.2	< 0.2	< 0.2	<0.2	< 0.2	< 0.2	<0.2	< 0.2	<0.2	< 0.2	< 0.2
Methyl butyl ketone (2-hexanone)	ug/L		< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Methyl Ethyl Ketone	ug/L 20		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Methyl Isobutyl Ketone	ug/L 20		< 1	<1	1		<1	1	1	1	1	< 1	1	<1
Methylana ablarida	ug/L 5	50	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Methylene Chlonde	µg/L 3	50	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Otamina Otamina			<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Styrene Tatasthan 1100	µg/L 0.5		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
letrachloroethane, 1,1,2,2-	µg/L		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Tetrachloroethane, 1,1,1,2-	µg/L 0.5		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Tetrachloroethylene	µg/L 0.5	10	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Trichlorobenzene, 1,2,4-	µg/L		< 0.3	< 0.3	< 0.3	< 0.3	<0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	<0.3	<0.3
Trichloroethane, 1,1,1-	µg/L 0.5		< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Trichloroethane, 1,1,2-	µg/L 0.5		<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	< 0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Trichloroethylene	µg/L 0.5	5	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Trichloropropane, 1.2.3-	ug/L		-	-	1 -	-	-	-	1 -	- 1	-	-	- 1	-
Trichlorofluoromethane	ug/1 5		<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4
Vinul oblarida	ug/L 0.2	1	<0.17	-0.4	-0.4	<0.17	<0.4	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17
Viriyi chloride	1µg/L 10.2		~0.17	-0.17		-0.17	-0.17	\$0.17	\$0.17	\$0.17	\$0.17	-0.17	\$0.17	-0.17
Halogenated Benzenes					1				1	1	1	1	1	
Bromobenzene	µg/L		-	-	-	-	-	-	-	-	-	-	-	-
Chlorotoluene, 2-	µg/L		-	-		-	-	-			-	-	-	-
Chlorotoluene, 4-	µg/L		-	-	-	-	-	-	-	-	-	-	-	-
Trichlorobenzene, 1,2,3	µg/L		· · ·	-	-	-	-	-	-	-	-	-	-	-
MAH														
Trimethylbenzene, 1,2,4-	µg/L		-	-	-	-	-	-	-	-	-	-	-	-
Trimethylbenzene, 1,3,5-	µg/L		-	-	-	-	-	-	-	-	-	-	-	-
Isopropylbenzene	ua/L			-	-	-	-	-	-	-	-	-	-	-
n-butylbenzene	ug/L		-	-	i -	-	-	-	i -	i -	-	i -	-	. I
n-propylbenzene				-		-	-		-		-	-	-	-
n jaopropyltoluopo	149/L		- ·		+				+			+		
p-isopropyiloidene	µg/L			-		-	-					-		
sec-putyibenzene	µg/L		· · ·				-				-			
tert-butylbenzene	µg/L		-			-	-				-			-

Table 7 - Groundwater Quality - VOCs

			ODWQS	98-2-L	98-2-M	98-2-M	98-2-M									
	Unit	RDL		2010-10-20	2012-11-01	2013-12-05	2014-10-27	2015-10-27	2016-10-01	2017-10-04	2018-11-15	2019-11-11	2020-11-09	2013-06-04	2013-12-05	2014-10-27
BTEX	1 0											0.5				
Benzene	µg/L	0.5	1	<0.1	<0.2	<0.2	<0.2	<0.2	<0.2	<0.5	<0.5	<0.5	<0.5	<0.2	<0.2	<0.2
loluene	µg/L	0.5	60	<0.2	<0.2	<0.2	<0.2	<0.2	0.29	<0.5	<0.5	<0.5	<0.5	<0.2	<0.2	<0.2
Ethylbenzene	µg/L	0.5	140	<0.1	-	<0.1	<0.1	<0.1	<0.1	<0.5	<0.5	<0.5	<0.5	<0.1	<0.1	<0.1
Xylene Total	µg/L	1.1	90	-	-	-	-	-	-	-	<1.1	<1.1	<1.1	-	-	-
VOCs	1															
Acetone	µg/L	30		<10	-	<1	<1	<1	<1	<2	<30	<30	<30	<1	<1	<1
Bromodichloromethane	µg/L	2		<0.1	-	<0.2	<0.2	<0.2	<0.2	<0.1	<2	<2	<2	<0.2	<0.2	<0.2
Bromoform	µg/L	5		<0.2	-	<0.1	<0.1	<0.1	<0.1	<0.1	<5	<5	<5	<0.1	<0.1	<0.1
Bromomethane	µg/L	0.5		<0.5	-	<0.2	<0.2	<0.2	<0.2	<0.3	<0.5	< 0.5	<0.5	<0.2	<0.2	<0.2
Carbon tetrachloride	µg/L	0.2	2	<0.1	-	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Chlorobenzene	µg/L		80	<0.1	-	<0.1	<0.1	<0.1	<0.1	<0.2	<0.5	<0.5	-	<0.1	<0.1	<0.1
Chloroform	µg/L	1		<0.1	-	<0.2	<0.2	<0.2	<0.2	<0.3	<1	<1	<1	<0.2	<0.2	<0.2
Chloroethane	µg/L			-	-	<0.2	<0.2	<0.2	<0.2	<0.1	<0.08	<3	-	<0.2	<0.2	<0.2
Chloromethane	µg/L			-	-	<0.4	<0.4	<0.4	<0.4	< 0.3	< 0.06	<2	-	<0.4	<0.4	<0.4
Dibromochloromethane	µg/L	2		<0.2	-	<0.1	<0.1	<0.1	<0.1	<0.1	<2	<2	<2	<0.1	<0.1	<0.1
Dibromochloropropane (DBCP)	µg/L			-	-	-	-	-	-	<1	-	-	-	-	-	-
Dibromoethylene, 1,2-trans-	µg/L			-	-	<0.2	<0.2	<0.2	<0.2	<0.1	< 0.5	< 0.5	-	<0.2	<0.2	<0.2
Dibromomethane	µg/L			-	-	-	-	-	-	<1	-	-	-	-	-	-
Dichlorobenzene, 1,2-	µg/L	0.5	200	<0.2	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.5	<0.5	<0.1	<0.1	<0.1
Dichlorobenzene, 1,3-	µg/L	0.5		<0.2	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.5	<0.5	<0.1	<0.1	<0.1
Dichlorobenzene, 1,4-	µg/L	0.5	5	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2	<0.5	<0.5	<0.5	<0.1	<0.1	<0.1
Dichlorodifluoromethane	µg/L	2		-	-	<0.2	<0.2	<0.2	<0.2	<1	<2	<2	<2	<0.2	<0.2	<0.2
Dichloropropane, 1,3-	µg/L			-	-	-	-	-	-	<0.2	-	-	-	-	-	-
Dichloroethane, 1,1-	µg/L	0.5		<0.1	-	< 0.3	< 0.3	< 0.3	< 0.3	<0.1	< 0.5	<0.5	< 0.5	< 0.3	< 0.3	<0.3
Dichloroethane, 1,2-	µg/L	0.5	5	<0.2	-	<0.2	<0.2	<0.2	<0.2	<0.1	< 0.5	<0.5	< 0.5	<0.2	<0.2	<0.2
Dichloroethylene, 1,1-	µg/L		14	<0.1	-	< 0.3	< 0.3	< 0.3	< 0.3	<0.1	-	-	<0.5	< 0.3	< 0.3	< 0.3
Dichloroethylene, 1, 2-trans-	µg/L	0.5		-	-	-	-	-	-	-	-	-	<0.5	-	-	-
Dichloroethylene, 1,2-cis-	µg/L	0.5		<0.1	-	<0.2	< 0.2	<0.2	<0.2	<0.1	< 0.5	< 0.5	< 0.5	<0.2	<0.2	<0.2
Dichloropropane, 1,2-	µg/L	0.5		<0.1	-	<0.2	<0.2	<0.2	<0.2	<0.1	< 0.5	<0.5	< 0.5	<0.2	<0.2	<0.2
Dichloropropane, 2,2-	µg/L			-	-	-	-	-	-	<0.2	-	-	-	-	-	-
Dichloropropene, 1,1-	µg/L			-	-	-	-	-	-	-	<0.1	<0.2	-	-	-	-
Dichloropropene, 1.3-cis-	ua/L	0.5		<0.2	-	<0.2	< 0.2	<0.2	<0.2	<0.1	< 0.5	< 0.5	< 0.5	<0.2	<0.2	<0.2
Dichloropropene, 1.3-trans-	ua/L	0.5		-	-	< 0.3	< 0.3	< 0.3	< 0.3	<0.1	< 0.5	< 0.5	< 0.5	< 0.3	< 0.3	< 0.3
Dichloropropene, 1.3-(cis+trans)	ua/L	0.5		-	-	< 0.3	< 0.3	< 0.3	< 0.3	<0.2	< 0.5	<0.5	< 0.5	< 0.3	< 0.3	< 0.3
Ethylene dibromide	ua/L	0.2		<0.2	-	< 0.1	<0.1	<0.1	<0.1	<0.1	<0.2	<0.2	<0.2	<0.1	<0.1	<0.1
Hexachlorobutadiene	ua/L	-		-	-	-	-	-	-	<1	-	-	-	-	-	-
Hexane	ua/L	5		-	-	<0.2	<0.2	<0.2	<0.2	<1	<5	<5	<5	<0.2	<0.2	<0.2
Methyl butyl ketone (2-hexanone)	ua/L	-		-	-	<0.2	< 0.3	< 0.3	<1	<10	-	-	-	< 0.3	< 0.3	< 0.3
Methyl Ethyl Ketone	ug/L	20		<5	-	<1	<1	<1	<1	<1	<20	<20	<20	<1	<1	<1
Methyl Isobutyl Ketone	ug/L	20		<5	-	<1	<1	<1	<1	<1	<20	<20	<20	<1	<1	<1
Methylene chloride	ua/L	5	50		< 0.3	< 0.3	<0.3	<0.3	<0.3	<0.3	< 0.3	<5	<5	<0.3	<0.3	<0.3
Methyl tert-Butyl Ether	ug/L	2		<0.2	-	<0.2	<0.2	<0.2	<0.2	<1	<2	<2	<2	<0.2	<0.2	<0.2
Styrene	ug/l	0.5		<0.2	-	<0.1	<0.1	<0.1	<0.1	<0.5	<0.5	<0.5	<0.5	<0.1	<0.1	<0.1
Tetrachloroethane 1122-		0.0		<0.2	-	<0.1	<0.1	<0.1	<0.1	<0.0	<0.5	<0.5	-	<0.1	<0.1	<0.1
Tetrachloroethane 1112-		0.5		<0.1	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.5	<0.5	<0.1	<0.1	<0.1
Tetrachloroethylene		0.5	10	<0.1	-	<0.2	<0.2	<0.2	<0.2	<0.2	<0.5	<0.5	<0.5	<0.2	<0.2	<0.2
Trichlorobenzene 1.2.4-	ua/L	5.5		-	-	<0.3	<0.3	<0.3	<0.3	<0.2	-	-	-	<0.3	<0.3	<0.3
Trichloroethane 111-	ug/l	0.5		<0.1		<0.3	<0.3	<0.3	<0.3	<0.1	<0.5	<0.5	<0.5	<0.3	<0.3	<0.3
Trichloroethane, 1,1,2-	ua/L	0.5		<0.2	-	<0.2	<0.2	<0.2	<0.2	<0.1	<0.5	<0.5	<0.5	<0.2	<0.2	<0.2
Trichloroethylene	ug/l	0.5	5	<0.1	-	<0.2	<0.2	<0.2	<0.2	<0.1	<0.5	<0.5	<0.5	<0.2	<0.2	<0.2
Trichloropropane, 1.2.3-	ug/L	5.0		-	-	-	-	-	-	<0.2	-	-	-	-	-	-
Trichlorofluoromethane		5		-	-	<0.4	<0.4	<0.4	<0.4	<0.2	<5	<5	<5	<0.4	<0.4	<0.4
Vinyl chloride		0.2	1	<0.2	<0.17	<0.17	<0.4	<0.17	<0.4	<0.1	<0.5	<0.2	<0.2	<0.7	<0.4	<0.17
Halogenated Benzenes	149/1	0.2	· ·	10.2	-0.17	-0.17	-0.17	-0.17	-0.17	-0.2	-0.0	10.2	-0.2	-0.17	-0.17	-0.17
Bromobenzene	uc/l	<u> </u>			-	-	-	-	-	<0.1	-	-	-	-	-	
Chlorotoluene 2	ug/L							-		<0.1	-					
Chlorotoluene 4-	149/L									<0.2		-				
Trichlorobenzene 123	1µg/L									<0.2	-	-	-			
MAH	IHG/L	<u> </u>			-	-	-	-	-	1 -0.2	-	-	-	-	-	-
Trimethylbenzene 124	lug/l	<u> </u>								-2	1			1		
Trimethylbenzene 135	ug/L						-	-		<0.6	<0.06	<0.1	-	-	-	
	ug/L	<u> </u>						-		<0.0	<0.00	<0.1	-			
n buttlbogzogo	ug/L	<u> </u>						-		<0.2		-	-			
	µg/L	<u> </u>						-		<0.7		-	-			
n-propyidenzene	IHG/L			· ·			-	-		<0.4	-	-		-	-	
p-isopropyitoluene	ILLIG/L			· ·			-	-		<0.4	-	-		-	-	
sec-butylbenzene	µg/L	<u> </u>			-	-	-	-	-	<0.5	-	-	-	-	-	
tert-butylbenzene	µg/L			-	-	-	-	-	-	<0.1		-				

Table 7 - Groundwater Quality - VOCs

			ODWQS	98-2-U	98-3-L	98-3-M	98-3-U								
	Unit	RDL		2010-10-20	2012-11-01	2013-12-05	2015-10-27	2016-10-01	2017-10-04	2018-11-15	2019-11-11	2020-11-09	2013-06-04	2013-06-04	2013-06-04
BTEX															
Benzene	µg/L	0.5	1	<0.1	<0.2	<0.2	<0.2	<0.2	< 0.5	<0.5	< 0.5	< 0.5	<0.2	<0.2	<0.2
Toluene	µg/L	0.5	60	<0.2	<0.2	<0.2	<0.2	<0.2	< 0.5	< 0.5	< 0.5	< 0.5	<0.2	<0.2	0.52
Ethylbenzene	ua/L	0.5	140	<0.1	-	<0.1	<0.1	< 0.1	< 0.5	< 0.5	< 0.5	< 0.5	<0.1	<0.1	<0.1
Xviene Total	ua/L	1.1	90	-	-	-	-	-	-	<1.1	<1.1	<1.1	-	-	-
VOCs	1-3										1				
Acetone	ua/l	30		<10	-	<1	<1	<1	<2	<30	<30	<30	<1	<1	<1
Bromodichloromethane	ug/l	2		<0.1	-	<0.2	<0.2	<0.2	<0.1	<2	<2	<2	<0.2	<0.2	<0.2
Bromoform	ug/L	5		<0.1		<0.2	<0.2	<0.1	<0.1		<5	<5	<0.2	<0.2	<0.2
Bromomothana	1µg/L	0.5		<0.2	-	<0.1	<0.1	<0.1	<0.1	<0.5	<0.5	<0.5	<0.1	<0.1	<0.1
Contract totrachlarida	µg/L	0.5		<0.5	-	<0.2	<0.2	<0.2	<0.3	<0.5	<0.0	<0.5	<0.2	<0.2	<0.2
Carbon tetrachionde	µg/L	0.2	2	<0.1	-	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Chlorobenzene	µg/L		80	<0.1	-	<0.1	<0.1	<0.1	<0.2	<0.5	<0.5	-	<0.1	<0.1	<0.1
Chioroform	µg/L	1		<0.1	-	<0.2	<0.2	<0.2	<0.3	<1	<1	<1	<0.2	<0.2	<0.2
Chloroethane	µg/L			-	-	<0.2	<0.2	<0.2	<0.1	<0.08	<3		<0.2	<0.2	<0.2
Chloromethane	µg/L	<u> </u>		-	-	<0.4	<0.4	<0.4	< 0.3	<0.06	<2	-	<0.4	<0.4	<0.4
Dibromochloromethane	µg/L	2		<0.2	-	<0.1	<0.1	<0.1	<0.1	<2	<2	<2	<0.1	<0.1	<0.1
Dibromochloropropane (DBCP)	µg/L			-	-	-	-	-	<1	-	-	-	-	-	-
Dibromoethylene, 1,2-trans-	µg/L			-	-	<0.2	<0.2	< 0.2	<0.1	< 0.5	< 0.5	-	<0.2	<0.2	<0.2
Dibromomethane	µg/L			-	-	-	-	-	<1	-	-	-	-	-	-
Dichlorobenzene, 1,2-	µg/L	0.5	200	<0.2	-	<0.1	<0.1	< 0.1	<0.1	< 0.5	< 0.5	< 0.5	<0.1	<0.1	< 0.1
Dichlorobenzene, 1,3-	µg/L	0.5		<0.2	-	<0.1	<0.1	<0.1	<0.1	<0.5	< 0.5	< 0.5	<0.1	<0.1	<0.1
Dichlorobenzene, 1,4-	µg/L	0.5	5	<0.2	<0.1	<0.1	<0.1	<0.1	<0.2	<0.5	<0.5	< 0.5	<0.1	<0.1	<0.1
Dichlorodifluoromethane	µg/L	2		-	-	0.41	<0.2	<0.2	<1	<2	<2	<2	<0.2	<0.2	<0.2
Dichloropropane, 1,3-	µg/L			-	-	-	-	-	<0.2	-	-	-	-	-	-
Dichloroethane, 1,1-	µg/L	0.5		<0.1	-	<0.3	< 0.3	< 0.3	<0.1	<0.5	<0.5	<0.5	<0.3	< 0.3	< 0.3
Dichloroethane, 1,2-	µg/L	0.5	5	<0.2	-	<0.2	<0.2	<0.2	<0.1	< 0.5	<0.5	< 0.5	<0.2	<0.2	<0.2
Dichloroethylene, 1,1-	µg/L		14	<0.1	-	< 0.3	< 0.3	< 0.3	<0.1	-	-	< 0.5	< 0.3	< 0.3	< 0.3
Dichloroethylene, 1, 2-trans-	ua/L	0.5		-	-	-	-	-	-	-	-	< 0.5	-	-	-
Dichloroethylene, 1.2-cis-	ua/L	0.5		<0.1	-	<0.2	<0.2	< 0.2	<0.1	< 0.5	< 0.5	< 0.5	<0.2	< 0.2	<0.2
Dichloropropane, 1.2-	ug/L	0.5		<0.1	-	<0.2	<0.2	<0.2	<0.1	<0.5	< 0.5	< 0.5	<0.2	<0.2	<0.2
Dichloropropane 2.2-	ug/l			-	-	-	-	-	<0.2	-	-	-			
Dichloropropene 11-		<u> </u>			-	-	· .	-		<0.1	<0.2			· .	-
Dichloropropene, 1,3-cis-		0.5		<0.2	-	<0.2	<0.2	<0.2	<0.1	<0.5	<0.5	<0.5	<0.2	<0.2	<0.2
Dichloropropene, 1,3 trans	ug/L	0.5		10.2		<0.2	<0.2	<0.2	<0.1	<0.5	<0.5	<0.5	<0.2	<0.2	<0.2
Dichloropropono 1.2 (cic+tropo)	1µg/L	0.5			-	<0.3	<0.3	<0.3	<0.1	<0.5	<0.5	<0.5	<0.3	<0.3	<0.3
Ethylono dibromido	ug/L	0.5			-	<0.3	<0.3	<0.3	<0.2	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
	µg/L	0.2		<0.2	-	<u> </u>	<u> </u>	<u> </u>	<0.1	~0.Z	<0.2	~0.Z	<u> </u>	<u> </u>	<u> </u>
Hexachiorobuladiene	µg/L	6		-	-	-	-		<1	-	-	-	-	-	
Hexarie	µg/L	5		-	-	<0.2	<0.2	<0.2	1	<0	<0	<0	<0.2	<0.2	<0.2
Methyl butyl ketone (2-nexanone)	µg/L	00		-	-	<0.3	<0.3	<1	<10	-	-	-	<0.3	<0.3	<0.3
Metnyi Etnyi Ketone	µg/L	20		<5	-	<1	<1	<1	<1	<20	<20	<20	<1	<1	<1
Methyl Isobutyl Ketone	µg/L	20		<5	-	<1	<1	<1	<1	<20	<20	<20	<1	<1	<1
Methylene chloride	µg/L	5	50	-	<0.3	< 0.3	< 0.3	< 0.3	< 0.3	<0.3	<5	<5	< 0.3	< 0.3	<0.3
Methyl tert-Butyl Ether	µg/L	2		<0.2	-	<0.2	<0.2	<0.2	<1	<2	<2	<2	<0.2	<0.2	<0.2
Styrene	µg/L	0.5		<0.2	-	<0.1	<0.1	<0.1	< 0.5	<0.5	< 0.5	< 0.5	<0.1	<0.1	<0.1
Tetrachloroethane, 1,1,2,2-	µg/L			<0.2	-	<0.1	<0.1	<0.1	< 0.4	< 0.5	< 0.5	-	<0.1	<0.1	<0.1
Tetrachloroethane, 1,1,1,2-	µg/L	0.5		<0.1	-	<0.1	<0.1	<0.1	<0.1	<0.5	<0.5	< 0.5	<0.1	<0.1	<0.1
Tetrachloroethylene	µg/L	0.5	10	<0.1	-	<0.2	<0.2	<0.2	<0.2	<0.5	< 0.5	< 0.5	<0.2	<0.2	<0.2
Trichlorobenzene, 1,2,4-	µg/L			-	-	<0.3	<0.3	<0.3	<0.2	-	-	-	<0.3	< 0.3	<0.3
Trichloroethane, 1,1,1-	µg/L	0.5		<0.1	-	< 0.3	< 0.3	< 0.3	<0.1	< 0.5	< 0.5	< 0.5	< 0.3	< 0.3	< 0.3
Trichloroethane, 1,1,2-	µg/L	0.5		<0.2	-	<0.2	<0.2	<0.2	<0.1	<0.5	< 0.5	<0.5	<0.2	<0.2	<0.2
Trichloroethylene	µg/L	0.5	5	<0.1	-	<0.2	<0.2	<0.2	<0.1	<0.5	<0.5	< 0.5	<0.2	<0.2	<0.2
Trichloropropane, 1,2,3-	µg/L			-	-	-	-	-	<0.2	-	-	-	-	-	-
Trichlorofluoromethane	µg/L	5		-	-	<0.4	<0.4	<0.4	<0.1	<5	<5	<5	<0.4	<0.4	<0.4
Vinyl chloride	µg/L	0.2	1	<0.2	<0.17	<0.17	<0.17	< 0.17	<0.2	< 0.5	<0.2	<0.2	<0.17	<0.17	< 0.17
Halogenated Benzenes		i —													
Bromobenzene	ua/L			-	-	-	-	-	<0.1	-	-	-	-	-	-
Chlorotoluene, 2-	ua/L			-	-	-	-	-	<0.2	-	-	-	-	-	-
Chlorotoluene, 4-	ua/I			-	-	-	-	-	<0.2	-	-	-	-	-	-
Trichlorobenzene 123	ug/l				-	-	· -	-	<0.2	-	· ·	-		· .	· .
MAH	148/1			-	-	-	-	-	-0.2	-	-	-	-	-	-
Trimethylbenzene 124-	lug/l				-	-	-		<2			-	-	-	-
Trimethylbenzene 135	ug/L			-	-	-	-	-	<0.6	<0.06	<01	-	-	-	-
Inneurybenzens	µg/L				-	-			<0.0	~0.00	<u> </u>				
n buttlbopzopo	µg/L	<u> </u>			-	-			<0.2						
	µg/L			· ·	-	-			<0.7						
n-propyidenzene	µg/L			-	-	-			<0.4			-			-
p-isopropyltoluene	µg/L	<u> </u>			-	-	-		<0.4			-		-	-
sec-butylbenzene	µg/L				-	-			<0.5						
tert-butylbenzene	µg/L			-	-	-	-		<0.1					-	

			ODWQS	103 Moon Line Road	103 Moon Line Road	103 Moon Line Road	130 Country Road 36	151 Country Road 36			
	Unit	RDL		2015-05-14	2015-10-27	2021-05-16	2018-05-28	2018-11-20	2019-04-15	2021-04-16	2015-05-14
Metals											
Barium (Filtered)	µg/L		1000	33	61	31	<1	94	94	86	3
Boron (Filtered)	µg/L		5000	95	85	166	229	194	92	104	170
Calcium (Filtered)	µg/L			105,000	134,000	92,700	650	135,000	120,000	122,000	890
Chloride	µg/L		250000	28,000	28,500	27,400	19,100	38,800	28,400	23,000	29,500
Iron (Filtered)	µg/L		300	10	<10	248	17	326	35	461	<10
Manganese (Filtered)	µg/L		50	<2	<2	4	<1	3	5	9	<2
Magnesium (Filtered)	µg/L			8,530	8,670	13,400	20	6,620	5,370	6,220	<50
Sodium (Filtered)	µg/L		200000	17,500	18,900	13,000	184,000	30,000	14,000	27,200	180,000
Inorganics											
Alkalinity (as CaCO3)	mg/L		500	372	335	289	316	320	304	325	315
Hardness (as CaCO3) (Filtered)	mg/L		500	297	370	287	2	365	322	330	2.2
Solids - Total Dissolved (TDS)	mg/L		500	354	410	368	335	412	362	378	382
Oxygen Demand - Chemical (COD)	mg/L			<5	<5	<5	5	<5	<5	<5	<5
Solids - Total Suspended (TSS)	mg/L			<10	<10	<10	-	-	-	<10	<10
Organic Carbon - Dissolved (DOC) (Filtered)	mg/L		5	0.9	0.8	0.9	0.9	2.9	1.9	1	0.9
Oxygen Demand - Biological (BOD)	mg/L			-	<5	<5	-	-	-	<5	-
Sulphate (Filtered)	mg/L		500	21.3	26	38.5	28	32	28	30.4	32
Nitrogen (NH3 & NH4)	mg/L			<0.02	0.02	0.04	0.02	0.11	0.06	<0.02	<0.02
Nitrate (as N)	mg/L		10	1.02	1.59	0.25	<0.05	0.2	0.06	<0.25	<0.1
Conductivity (lab)	µS/cm			661	762	675	646	786	697	713	746
pH (Lab)	-		6.5-8.5	8.18	8.03	8.25	7.84	7.59	7.86	8.01	8.16
Field											
DO (Field)	mg/L			-	-	8.3	2.72	-	2.75	-	-
Redox Potential (Field)	mV			-	-	-	62	-	-	-	-
Temp (Field)	°C			-	-	12.3	14.6	-	4	-	-
Conductivity (field)	µS/cm			-	-	671	720	-	-	-	-
pH (Field)	-		6.5-8.5	-	-	7.1	7.17	-	-	-	-

			ODWQS	314 Riverside Drive	320 Riverside Drive	320 Riverside Drive	320 Riverside Drive	320 Riverside Drive	396 Riverside Drive	396 Riverside Drive	396 Riverside Drive
	Unit	RDL		2017-10-04	2017-10-04	2018-11-15	2019-04-15	2019-11-11	2017-10-04	2018-11-15	2019-04-15
Metals											
Barium (Filtered)	µg/L		1000	129	1	<1	1	1	111	122	78
Boron (Filtered)	µg/L		5000	44	31	27	25	26	14	12	11
Calcium (Filtered)	µg/L			135,000	1,550	1,050	1,570	2,080	102,000	101,000	94,300
Chloride	µg/L		250000	26,000	21,600	27,900	10,500	38,700	20,300	24,500	27,400
Iron (Filtered)	µg/L		300	146	<5	<5	<5	<5	6	<5	<5
Manganese (Filtered)	µg/L		50	5	<1	<1	<1	<1	<1	<1	<1
Magnesium (Filtered)	µg/L			8,000	90	90	100	220	3,590	3,900	2,900
Sodium (Filtered)	µg/L		200000	9,800	160,000	185,000	131,000	192,000	18,100	17,200	14,200
Inorganics											
Alkalinity (as CaCO3)	mg/L		500	320	304	297	259	314	261	232	221
Hardness (as CaCO3) (Filtered)	mg/L		500	370	4	3	4	6	270	269	248
Solids - Total Dissolved (TDS)	mg/L		500	405	385	375	306	404	326	292	291
Oxygen Demand - Chemical (COD)	mg/L			<5	<5	<5	9	11	<5	<5	5
Solids - Total Suspended (TSS)	mg/L			-	-	-	-	-	-	-	-
Organic Carbon - Dissolved (DOC) (Filtered)	mg/L		5	2.5	2.2	2.8	2.8	3	1.8	2	1.9
Oxygen Demand - Biological (BOD)	mg/L			-	-	-	-	-	-	-	-
Sulphate (Filtered)	mg/L		500	21	16	24	18	17	8	9	8
Nitrogen (NH3 & NH4)	mg/L			<0.01	<0.01	0.03	0.03	0.02	<0.01	0.04	0.03
Nitrate (as N)	mg/L		10	0.06	0.18	0.73	0.43	0.87	0.63	0.92	0.21
Conductivity (lab)	µS/cm			737	700	720	590	772	593	563	562
pH (Lab)	-		6.5-8.5	7.76	7.87	7.78	7.92	7.85	7.81	7.93	8.01
Field											
DO (Field)	mg/L			3.06	4.87	3.38	6.09	2.86	7.98	7.74	8.66
Redox Potential (Field)	mV			123	151	153	-	119	111	103	-
Temp (Field)	°C			19	17.9	13	14	10	13.7	21.1	11
Conductivity (field)	µS/cm			690	660	730	-	830	580	570	-
pH (Field)	-		6.5-8.5	7.1	7.39	8.14	-	7.61	7.48	7.72	-

			ODWQS	396 Riverside Drive	515 Riverside Drive	68 Country Road 36	68 Country Road 36				
	Unit	RDL		2019-11-11	2015-05-14	2017-10-04	2018-05-28	2019-04-15	2021-05-16	2017-06-14	2017-10-04
Metals											
Barium (Filtered)	µg/L		1000	109	144	175	163	170	147	88	104
Boron (Filtered)	µg/L		5000	6	11	18	13	10	16	6	23
Calcium (Filtered)	µg/L			90,600	106,000	109,000	104,000	114,000	96,100	116,000	133,000
Chloride	µg/L		250000	27,400	60,800	24,700	36,100	93,200	50,000	41,500	40,400
Iron (Filtered)	µg/L		300	<5	<10	32	21	23	<10	26	23
Manganese (Filtered)	µg/L		50	<1	<2	1	1	<1	<2	<1	1
Magnesium (Filtered)	µg/L			3,820	4,070	4,280	4,220	4,470	3,870	3,770	4,110
Sodium (Filtered)	µg/L		200000	18,800	37,600	20,500	27,700	37,900	26,900	41,700	34,100
Inorganics											
Alkalinity (as CaCO3)	mg/L		500	229	264	280	257	233	265	282	341
Hardness (as CaCO3) (Filtered)	mg/L		500	242	281	290	277	303	256	304	349
Solids - Total Dissolved (TDS)	mg/L		500	287	394	350	313	432	334	397	446
Oxygen Demand - Chemical (COD)	mg/L			<5	<5	<5	<5	<5	<5	<5	<5
Solids - Total Suspended (TSS)	mg/L			-	<10	-	-	-	<10	-	-
Organic Carbon - Dissolved (DOC) (Filtered)	mg/L		5	1.5	1.4	2.3	1.5	2.2	1.6	1.4	2.4
Oxygen Demand - Biological (BOD)	mg/L			-	-	-	-	-	<5	-	-
Sulphate (Filtered)	mg/L		500	6	11.2	6	8	9	11	10	10
Nitrogen (NH3 & NH4)	mg/L			0.02	<0.02	0.01	<0.01	0.03	<0.02	<0.01	0.02
Nitrate (as N)	mg/L		10	0.86	2.59	0.97	1.07	4.66	1.6	0.81	0.83
Conductivity (lab)	µS/cm			554	729	637	604	820	654	721	810
pH (Lab)	-		6.5-8.5	7.86	8.21	7.67	7.82	7.89	8	7.53	7.59
Field											
DO (Field)	mg/L			9.31	-	4.38	6.05	6.12	7.9	6.93	6.76
Redox Potential (Field)	mV			96	-	120	78	-	-	57	101
Temp (Field)	0°			8.6	-	15.1	11.1	9	8.6	13.1	14.6
Conductivity (field)	µS/cm			600	-	650	670	-	652	810	800
pH (Field)	-		6.5-8.5	7.59	-	7.14	7.17	-	7.8	6.86	7.04

			ODWQS	68 Country Road 36	95 Country Road 36	95 Country Road 36	95 Country Road 36	Empire	Empire			
	Unit	RDL		2018-05-28	2018-11-15	2019-04-15	2019-11-11	2015-05-14	2021-05-16	2021-10-16	2011-05-01	2012-05-01
Metals												
Barium (Filtered)	µg/L		1000	83	150	103	139	89	81	129	23	21
Boron (Filtered)	µg/L		5000	10	14	12	7	13	15	22	450	349
Calcium (Filtered)	µg/L			111,000	152,000	113,000	135,000	115,000	94,900	141,000	100,000	90,500
Chloride	µg/L		250000	48,300	146,000	138,000	170,000	105,000	65,800	109,000	30,000	29,300
Iron (Filtered)	µg/L		300	7	8	5	6	<10	<10	<10	<100	<10
Manganese (Filtered)	µg/L		50	1	<1	<1	1	<2	<2	<2	-	19
Magnesium (Filtered)	µg/L			3,190	4,160	3,330	4,020	3,580	3,390	3,900	34,000	31,300
Sodium (Filtered)	µg/L		200000	35,200	100,000	67,500	125,000	53,000	30,100	84,200	30,000	25,600
Inorganics												
Alkalinity (as CaCO3)	mg/L		500	264	330	239	347	270	234	408	246	267
Hardness (as CaCO3) (Filtered)	mg/L		500	291	397	296	354	302	251	368	-	355
Solids - Total Dissolved (TDS)	mg/L		500	333	613	509	659	470	386	588	516	498
Oxygen Demand - Chemical (COD)	mg/L			<5	<5	<5	<5	<5	<5	<5	<5	<5
Solids - Total Suspended (TSS)	mg/L			-	-	-	-	<10	<10	<10	-	<10
Organic Carbon - Dissolved (DOC) (Filtered)	mg/L		5	1.2	2.3	1.6	1.3	1.2	1.2	1.4	0.7	0.8
Oxygen Demand - Biological (BOD)	mg/L			-	-	-	-	-	<5	<5	-	<5
Sulphate (Filtered)	mg/L		500	9	18	14	16	13.2	12.3	18.4	140	146
Nitrogen (NH3 & NH4)	mg/L			0.01	0.02	0.04	0.02	0.05	<0.02	<0.02	0.13	0.07
Nitrate (as N)	mg/L		10	0.41	1.7	1.52	2.3	0.62	0.63	2.3	<0.1	<0.05
Conductivity (lab)	µS/cm			642	1,140	956	1,220	861	628	1,080	843	785
pH (Lab)	-		6.5-8.5	7.9	7.94	7.96	7.74	8.14	8.1	7.06	7.98	8.1
Field												
DO (Field)	mg/L			9.17	7.87	10.31	4.86	-	8.3	8.7	-	-
Redox Potential (Field)	mV			55	140	-	114	-	-	-	-	-
Temp (Field)	°C			12.5	8.4	7	14.3	-	9	11.3	-	-
Conductivity (field)	µS/cm			690	1,030	-	1,100	-	726	935	-	-
pH (Field)	-		6.5-8.5	7.26	7.47	-	7.02	-	7.9	7	-	-

			ODWQS	Empire												
	Unit	RDL		2012-11-01	2013-06-04	2013-12-05	2014-05-12	2014-10-27	2015-04-07	2015-10-27	2017-06-07	2017-10-04	2018-05-28	2018-11-15	2019-04-15	2019-11-11
Metals																
Barium (Filtered)	µg/L		1000	20	20	20	44	24	<2	22	21	22	32	20	23	24
Boron (Filtered)	µg/L		5000	380	387	343	152	389	409	390	369	396	397	432	135	442
Calcium (Filtered)	µg/L			91,000	104,000	87,800	96,000	97,900	4,210	98,000	97,100	98,500	97,700	98,400	94,400	94,700
Chloride	µg/L		250000	29,900	28,200	26,900	21,500	28,000	31,400	25,900	24,900	26,500	24,800	26,900	24,200	26,100
Iron (Filtered)	µg/L		300	30	<10	<10	<10	<10	<10	<10	<5	6	<5	15	39	10
Manganese (Filtered)	µg/L		50	23	21	26	17	23	<2	26	21	26	28	20	4	20
Magnesium (Filtered)	µg/L			31,200	36,400	31,100	14,500	30,100	1,340	31,600	34,100	36,500	31,500	35,600	13,500	34,700
Sodium (Filtered)	µg/L		200000	25,000	75,600	28,400	15,500	27,900	202,000	27,700	27,600	25,100	29,600	32,200	15,700	30,400
Inorganics																
Alkalinity (as CaCO3)	mg/L		500	255	250	251	225	243	257	263	258	258	239	239	233	233
Hardness (as CaCO3) (Filtered)	mg/L		500	356	410	347	299	368	16	375	383	396	374	392	291	379
Solids - Total Dissolved (TDS)	mg/L		500	488	556	510	376	508	516	494	467	457	395	443	338	433
Oxygen Demand - Chemical (COD)	mg/L			<5	<5	<5	<5	5	<5	<5	9	<5	<5	<5	<5	<5
Solids - Total Suspended (TSS)	mg/L			<10	<10	<10	<10	<10	<10	<10	-	-	-	-	-	-
Organic Carbon - Dissolved (DOC) (Filtered)	mg/L		5	0.7	<1	0.9	1.8	0.9	0.7	0.6	0.9	1.4	0.9	1.8	2	1.2
Oxygen Demand - Biological (BOD)	mg/L			<5	<5	<5	<5	<5	<5	<5	-	-	-	-	-	-
Sulphate (Filtered)	mg/L		500	147	160	161	75.2	148	151	142	122	119	142	163	56	164
Nitrogen (NH3 & NH4)	mg/L			0.1	0.11	0.13	0.03	0.07	<0.02	0.06	0.04	0.08	0.06	0.1	0.03	0.08
Nitrate (as N)	mg/L		10	< 0.05	<0.25	<0.25	<0.1	<0.1	<0.25	<0.25	< 0.05	<0.05	<0.05	< 0.05	0.28	< 0.05
Conductivity (lab)	µS/cm			803	875	811	650	859	903	824	849	830	755	840	651	822
pH (Lab)	-		6.5-8.5	8.19	7.95	7.97	8.11	8.04	8.3	7.94	7.84	7.81	7.95	7.95	7.99	7.87
Field																
DO (Field)	mg/L			-	-	-	-	-	-	-	1.39	2.31	4.08	3.04	6.81	2.94
Redox Potential (Field)	mV			-	-	-	-	-	-	-	-1	100	34	122	-	98
Temp (Field)	°C			-	-	-	-	-	-	-	13.4	15.3	11.6	13.7	10	13.8
Conductivity (field)	µS/cm			-	-	-	-	-	-	-	1,020	850	810	790	-	830
pH (Field)	-		6.5-8.5	-	-	-	-	-	-	-	7.1	7.32	7.35	7.76	-	7.45

			ODWQS	Empire	Empire
	Unit	RDL		2021-04-16	2021-10-16
Metals					
Barium (Filtered)	µg/L		1000	36	20
Boron (Filtered)	µg/L		5000	245	380
Calcium (Filtered)	µg/L			100,000	98,400
Chloride	µg/L		250000	25,200	29,200
Iron (Filtered)	µg/L		300	<10	<10
Manganese (Filtered)	µg/L		50	21	22
Magnesium (Filtered)	µg/L			24,400	30,800
Sodium (Filtered)	µg/L		200000	21,900	28,300
Inorganics					
Alkalinity (as CaCO3)	mg/L		500	260	274
Hardness (as CaCO3) (Filtered)	mg/L		500	350	373
Solids - Total Dissolved (TDS)	mg/L		500	412	534
Oxygen Demand - Chemical (COD)	mg/L			<5	<5
Solids - Total Suspended (TSS)	mg/L			<10	<10
Organic Carbon - Dissolved (DOC) (Filtered)	mg/L		5	1.1	0.8
Oxygen Demand - Biological (BOD)	mg/L			<5	<5
Sulphate (Filtered)	mg/L		500	109	171
Nitrogen (NH3 & NH4)	mg/L			<0.02	0.06
Nitrate (as N)	mg/L		10	<0.25	<0.25
Conductivity (lab)	µS/cm			738	840
pH (Lab)	-		6.5-8.5	8.13	7.39
Field					
DO (Field)	mg/L			4.8	4.6
Redox Potential (Field)	mV			-	-
Temp (Field)	°C			9.1	11.5
Conductivity (field)	µS/cm			758	747
pH (Field)	-		6.5-8.5	7.7	7.2

Table 9 - Landfill Gas Monitoring Data

	Top of Screen	Water	Saraan			Pe	rcent Metha	ne by Volu	ne		
	Flowetion $(m)^1$	Elevation	Screen								
Well ID	Elevation (III)	(mASL) ²	Saturateu	7-Jun-17	4-Oct-17	28-May-18	15-Nov-18	15-Apr-19	11-Nov-19	20-Apr-20	9-Nov-20
97-1-U	254.9	255.6	yes	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05
97-1-M	250.6	253.5	yes	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
97-1-L	244.4	253.5	yes	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
97-2-U	258.8	258.3	no	< 0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	< 0.05
97-2-L	254.0	254.2	yes	< 0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	< 0.05
97-3	259.4	259.2	no	>2.5	0.27	1.18	<0.05	<0.05	< 0.05	<0.05	< 0.05
98-1-U	256.7	256.8	yes	< 0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	< 0.05
98-1-M	252.5	255.5	yes	< 0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	< 0.05
98-1-L	248.2	255.0	yes	< 0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	< 0.05
98-2-U	252.2	256.1	yes	< 0.05	<0.05	< 0.05	<0.05	<0.05	< 0.05	<0.05	< 0.05
98-2-M	247.8	253.5	yes	< 0.05	<0.05	< 0.05	<0.05	<0.05	< 0.05	<0.05	< 0.05
98-2-L	240.3	254.7	yes	< 0.05	<0.05	< 0.05	<0.05	<0.05	< 0.05	<0.05	< 0.05
98-3-U	253.4	255.3	yes	< 0.05	< 0.05	< 0.05	<0.05	<0.05	< 0.05	<0.05	< 0.05
98-3-M	248.4	253.3	yes	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	< 0.05	<0.05	< 0.05
98-3-L	243.9	252.8	yes	< 0.05	<0.05	< 0.05	<0.05	<0.05	< 0.05	<0.05	<0.05
00-1-U	264.0	261.9	no	< 0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05
00-1-M	254.4	260.3	yes	< 0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05
00-1-L	248.3	256.7	yes	< 0.05	<0.05	< 0.05	<0.05	<0.05	< 0.05	<0.05	<0.05
BH16-1S	256.0	257.6	yes	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05
BH16-1D	249.4	255.0	yes	<0.05	<0.05	< 0.05	<0.05	< 0.05	< 0.05	<0.05	< 0.05

Notes:

1. Screen length is 1.5 m for all monitors except BH16-1D.

2. Average water elevation since May 2014.

Table 10 - Monthly Summary of Materials Accepted and Transfered

	Quantity accepted at the Site, as recorded on daily incoming waste forms													
Month	Vehicles	Total Garbage Bags	Major Appliances without Freon (quantity)	Major Appliances with Freon (quantity)	Reuse Centre Bins (40 yd - quantity)	Brush (tonnes)	Tires ¹ (quantity)	Alcohol Containers ² (quantity)						
January	1,385	1,822	-	-	-	-	-	-						
February	1,630	2,087	-	-	-	-	-	-						
March	1,665	2,132	-	-	-	-	-	-						
April	1,918	2,491	-	-	-	-	-	-						
May	2,837	3,623	-	-	-	-	-	-						
June	3,552	4,127	-	-	-	-	-	-						
July	3,809	4,905	-	-	-	-	-	-						
August	3,840	5,150	-	-	-	-	-	-						
September	3,388	3,658	-	-	-	-	-	-						
October	2,670	3,290	-	-	-	-	-	-						
November	2,362	2,848	-	-	-	-	-	-						
December	2,006	2,731	-	-	-	-	-	-						
Annual Total	31,062	38,864	-	-	-	180.9	722	30,250						

				Quantity rep	orted to be re	emoved from	the Site, trans	ported/proces	sed as noted				
Month	Waste ³ (tonnes)	Loads ³	C&D Materials ⁴ (tonnes)	Containers ⁵ (tonnes)	Fibres ⁵ (tonnes)	Furniture ⁶ (tonnes)	Scrap Metals & White Goods ⁷ (tonnes)	WEEE ⁸ (tonnes)	MHSW ⁹ (tonnes)	MHSW Event Day ¹⁰ (tonnes)	Empty Oil Container ¹¹ (tonnes)	Textiles ¹² (tonnes)	Durable Plastics (tonnes) ¹³
January	22.99	5	-	4.29	4.72	-	-	-	-	-	-	-	-
February	13.95	4	-	4.07	3.47	-	-	-	-	-	-	-	-
March	24.52	4	-	3.34	6.86	-	-	4.00	-	-	0.06	-	-
April	32.27	5	-	6.25	5.48	-	-	-	-	-	-	-	-
May	24.71	5	14.15	6.75	6.90	-	12.93	-	-	-	-	-	-
June	37.03	6	-	8.73	8.28	-	-	-	-	-	-	-	-
July	49.79	7	-	6.11	9.41	-	-	-	-	-	0.06	-	-
August	52.95	6	-	8.52	7.99	-	-	3.90	-	-	-	-	-
September	44.87	7	-	8.50	7.94	-	-	-	-	-	0.11	-	-
October	34.17	5	45.66	4.91	10.02	-	19.87	-	-	-	-	-	-
November	30.08	5	-	5.51	5.44	-	-	4.29	-	-	0.03	-	-
December	30.92	6	-	6.05	8.21	-	-	2.59	-	-	-	-	-
Annual Total	398.25	65.00	59.81	73.03	84.72	-	25.39	14.78	2.17	-	0.25	0.48	-

Notes:

1. Transferred off-site to retire your tire

2. Transferred off-site by Community Living to the Beer Store

3. Scaled weights from the Bensfort Road Waste Disposal Site

4. Transported by Kawartha Disposal to Waste Connections for processing

5. Transported by Emterra to Peterborough Materials Recovery Facility for processing by HGC

6. Collected at all MTL transfer stations, transferred to the Peterborough Waste Management Facility

7. Transported by Kawartha Disposal to Kings Auto Wreckers

8. Transported and processed by Quantum Life Cycle LPP on contract with the County of Peterborough

9. Limited MHSW collected at all transfer sites, including batteries (Call 2 Cycle), flourscent tubes (Photech), empty oil/anitfreeze containers (Pnweko), and car batteries (Photech)

10. Event Cancelled in 2020 due to the COVID -19 pandemic

11. Transported and Processed by Pnewko on contract with the County of Peterborough

12. Transferred to the Diabetes Association and Jakes House

13. County Program cancelled in 2020 due to COVID-19 pandemic

Appendix A Environmental Compliance Approval A341307

Ministry of the Environment and Climate Change Ministère de l'Environnement et de l'Action en matière de changement climatique

AMENDED ENVIRONMENTAL COMPLIANCE APPROVAL

NUMBER A341307 Issue Date: October 2, 2017

The Corporation of the Municipality of Trent Lakes 760 Peterborough County Road 36 Trent Lakes, Ontario K0M 1A0

Site Location: Bobcaygeon Transfer Station 42 County Rd 36 Municipality of Trent Lakes

You have applied under section 20.2 of Part II.1 of the Environmental Protection Act , R.S.O. 1990, c. E. 19 (Environmental Protection Act) for approval of:

the use and operation of a Waste Transfer Station at the closed Bobcaygeon Landfill site.

For the purpose of this environmental compliance approval, the following definitions apply:

a. "Act" and "EPA" means Environmental Protection Act, R.S.O. 1990, c. E. 19, as amended;

b. "*Approval*" means this Environmental Compliance Approval and any Schedules to it, including the application and supporting documentation listed in Schedule "A";

c. "County" means the County of Peterborough.

d. " *Director* " means any *Ministry* employee appointed in writing by the *Minister* pursuant to section 5 of the *EPA* as a Director for the purposes of Part V of the *EPA* ;

e. " *District Manager*" means the *District Manager* of the local district office of the *Ministry* in which the *Site* is geographically located;

f. " *Ministry* " and "*MOECC* " means the Ministry of the Environment and Climate Change;

g. " *MHSW* " means Municipal Hazardous and/or Special Waste restricted to waste classes 121 and 146, generated within the geographic boundaries of the Municipality of Trent Lakes;

h. " **Ontario Regulation 393/04** " means Ontario Regulation 393/04 Waste Electrical and Electronic Equipment made under the Waste Diversion Act 2002;

i. " *Ontario Regulation 463/10* " means Ontario Regulation 463/10, Ozone Depleting Substances and Other Halocarbons, made under the *EPA;*

j. " **Operator** " means any person, other than the Owner's employees, authorized by the Owner as having the charge, management or control of any aspect of the site;

k. " **Owner** " means any person that is responsible for the establishment or operation of the site being approved by this *Approval*, and includes the Municipality of Trent Lakes, and its successors and assigns;

I. " **OWRA**" means the Ontario Water Resources Act, R.S.O. 1990, c. O-40, as amended from time to time;

m. " PA " means the Pesticides Act, R.S.O. 1990, c. P-11, as amend from time to time;

n. " *Provincial Officer* " means any person designated in writing by the Minister as a Provincial Officer pursuant to section 5 of the *OWRA* or section 5 of the *EPA* or section 17 of *PA*.

o. "*Regional Director*" means the Regional Director of the local Regional Office of the *Ministry* in which the *Site* is located;

p. "*Reg. 347*" means Regulation 347, R.R.O. 1990, made under the *EPA*, as amended from time to time;

q. *"Transfer Station"* means the area of land for the handling and storage of the disposable waste, leaf & yard waste, recyclable materials, MHSW, WEEE, organic waste and all other waste materials.

r. **"** *Site* **"** means the Landfill Site and Transfer Station operations being approved under this Approval, at the Bobcaygeon Site and Transfer Station, 42 County Rd 36, Municipality of Trent Lakes, County of Peterborough.

s. "Source Separated Organics" means organic materials separated at the point of generation;

t. "Township" means the Corporation of the Municipality of Trent Lakes.

u. "Trained personnel" means knowledgeable in the following through instruction and/or practice:

i.. relevant waste management legislation, regulations and guidelines;

ii. major environmental concerns pertaining to the waste to be handled;

iii. occupational health and safety concerns pertaining to the processes and wastes to be handled;

iv. management procedures including the use and operation of equipment for the processes and wastes to be handled;

v. emergency response procedures;

vi. specific written procedures for the control of nuisance conditions;

vii. specific written procedures for refusal of unacceptable waste loads; viii. the requirements of this *Approval*.

v. "Waste electrical and electronic equipment (WEEE)" means devices listed in Schedules 1 through 7 of Ontario Regulation 393/04.

You are hereby notified that this environmental compliance approval is issued to you subject to the terms and conditions outlined below:

TERMS AND CONDITIONS

PART 1- GENERAL

Compliance

2. The *Owner* and *Operator* shall ensure compliance with all the conditions of this *Approval* and shall ensure that any person authorized to carry out work on or operate any aspect of the *Site* is notified of this *Approval* and the conditions herein and shall take all reasonable measures to ensure any such person complies with the same.

3. Any person authorized to carry out work on or operate any aspect of the *Site* shall comply with the conditions of this *Approval*.

Build, etc. in Accordance

4. Except as otherwise provided by this *Approval*, the *Site* shall be designed, developed, built, operated and maintained in accordance with the applications for this *Approval* and all supporting documentation listed in Schedule "A".

Interpretation

5. Where there is a conflict between a provision of any document, including the application, referred to in this *Approval*, and the conditions of this *Approval*, the conditions in this *Approval* shall take precedence.

6. Where there is a conflict between the application and a provision in any documents listed in Schedule "A", the application shall take precedence, unless it is clear that the purpose of the document was to amend the application and that the *Ministry* approved the amendment.

7. Where there is a conflict between any two documents listed in Schedule "A", other than the application, the document bearing the most recent date shall take precedence.

8. The requirements of this *Approval* are severable. If any requirement of this *Approval*, or the application of any requirement of this *Approval* to any circumstance, is held invalid or unenforceable, the application of such requirement to other circumstances and the remainder of this *Approval* shall not be affected thereby.

Other Legal Obligations

9. The issuance of, and compliance with the conditions of, this *Approval* does not:

a. relieve any person of any obligation to comply with any provision of any applicable statute, regulation or other legal requirement; or

b. limit in any way the authority of the *Ministry* to require certain steps be taken or to require the *Owner* and *Operator* to furnish any further information related to compliance with this *Approval*;

Adverse Effects

10. The *Owner* and *Operator* shall take steps to minimize and ameliorate immediately any adverse effect on the natural environment or impairment of water quality resulting from the *Site*, including such accelerated or additional monitoring as may be necessary to determine the nature and extent of the effect or impairment.

11. Despite an *Owner*, *Operator* or any other person fulfilling any obligations imposed by this *Approval*, the person remains responsible for any contravention of any other condition of this *Approval*

or any applicable statute, regulation, or other legal requirement resulting from any act or omission that caused the adverse effect to the natural environment or impairment of water quality.

Change of Owner

12. The *Owner* shall notify the *Director* in writing, and forward a copy of the notification to the *District Manager,* within 30 days of the occurrence of any changes:

a. the ownership of the Site

b. the Operator of the Site;

c. the address of the Owner or Operator;

d. the partners, where the *Owner* is or at any time becomes a partnership and a copy of the most recent declaration filed under the *Business Names Act,* R.S.O. 1990, c. B-17 shall be included in the notification;

e. the name of the corporation where the *Owner* is or at any time becomes a corporation, other than a municipal corporation, and a copy of the most current information filed under the *Corporations Information Act*, R.S.O. 1990, C-39 shall be included in the notification; or

13. No portion of this *Site* shall be transferred or encumbered prior to or after closing of the *Site* unless the *Director* is notified in advance and sufficient financial assurance is deposited with the *Ministry* to ensure that these conditions will be carried out. In the event of any change in *Ownership* of the *Site*, other than change to a successor municipality, the *Owner* shall notify the successor of and provide the successor with a copy of this *Approval*, and the Owner shall provide a copy of the notification to the *District Manager* and the *Director*.

PART 2 - LANDFILL CLOSURE

Closure

14. The landfill site shall be closed, inspected and maintained in accordance with Items 5 through 10 in Schedule "A". The *Owner*shall take all necessary action to ensure that no additional waste is deposited in or on the *Landfill Site*.

15. Upon commencement of the operation of the Transfer Station facility, or December 31, 2002, which ever occurs first, the Owner shall take all necessary action to ensure that waste is no longer disposed of in the landfill.

16. The *Owner* shall ensure that MOE Guideline B-7 Reasonable Use Guideline is applied and met at all points on the property line which are impacted by leachate at the *Site*.

17. (1) The *Owner* shall conduct groundwater and surface water monitoring as per Section 3 and 5.3 in Item 5 in Schedule "A".

(2) The *Owner* can make changes to the monitoring program in accordance with the recommendations of the annual report provided that the *District Manager* agrees, in writing, to such changes to the program.

18. (1) The Owner is hereby permitted to process (chip) and store the process wood waste on-site in accordance with Items 9 to 10 in Schedule "A".

(2) The maximum storage period for the chipped wood waste at the site is one (1) year. Any waste

stored more than one year shall be removed from the Site within 30 days of the one year anniversary of material being processed.

(3) The maximum storage capacity for the chipped wood is five thousand (5,000) cubic meters.

Ground and Surface Water Reporting

19. By April 30, 2007, and by every April 30 thereafter, the proponent shall submit to the MOE Peterborough District Manager, an annual report that summarizes groundwater and surface water monitoring and any remedial work that occurred at the site. The report shall be prepared by a qualified professional hydrogeologist and surface water specialist. The report shall contain, but is not limited to, the following information:

a) a discussion and/or illustration on any changes that may have occurred in the current reporting period with regards to the landfill's hydrogeologic setting, potentially sensitive groundwater and/or surface water features or changes to the landfill. If no changes occur, then author shall reference appropriate Section(s) in previous reports to direct the reviewer to the existing information.
b) Sampling protocols, and a description of any problems encountered during the sampling events which may have impacted the reliability of analytical results;

c) The data shall be interpreted by the author(s) and presented in a manner that is acceptable to the Director. All analytical results for all parameters shall be presented in tabular form. All analytical results for the critical contaminants must be compared to the trigger levels in accordance with the environmental contingency plan;

d) The report shall identify the "Reasonable Use" (Guideline B-7) of the ground water that is to be impacted. The report should also identify expected and worst-case impacts;

e) The report shall include a comparison of the results of surface water sampling to the PWQOs or Interim PWQOs described in Water Management, MOEE, July 1994, as amended from time to time;

f) A discussion on the contaminant attenuation zone and buffer zone requirements;

g) QA/QC protocol must be described; and

h) The report shall have the conclusions and recommendations of the author(s), especially as they concern future sampling parameters, frequency and protocol.

PART 3 - WASTE TRANSFER STATION

In Accordance

20. Except as otherwise provided by these conditions, the Transfer Station shall be located, constructed, used, maintained, operated, inspected, reported and closed, and all facilities, equipment and fixtures shall be built and installed, in accordance with the Application for Approval for a Waste Disposal Site dated February 8, 2002, and supporting documentation, and plans and specifications listed in Schedule "A".

21. Disposal of waste from the Transfer Station shall be to a licensed waste disposal site.

Hours of Operation

22. a. The *Owner* shall set operational hours which provides an adequate level of service. The hours of operation shall be any day of the week, during daylight hours.

b. Hours of operation may be changed by the *Owner* at any time, provided that the hours are correctly posted at the *Site* gate, and that suitable public notice is given of any change.

c. The Ownershall notify the District Manager, in writing, of any changes to the hours of operation.

23. With the prior written approval of the *District Manager*, the time periods may be extended to accommodate seasonal or unusual quantities of waste.

Approved Waste Type and Quantities

24. The Transfer Station shall only accept municipal waste limited to solid non-hazardous residential, industrial, commercial, institutional (IC&I) and *construction and demolition waste*, *WEEE, source separated organics* and *limited MHSW* from the Municipality of Trent Lakes located in the County of Peterborough.

25. The Transfer Station may receive up to 500 cubic metres of waste and/or recyclable materials per day.

26. The total volumes of waste/materials stored at the Transfer Station at any one time shall not exceed:

- a) Municipal solid waste (non-segregated) 130 cubic metres
- b) Recyclable materials 160 cubic metres
- c) Tires 200 cubic metres
- d) White goods 400 cubic metres
- e) Metal 400 cubic metres
- f) Leaf & Yard Waste (wood & brush) 400 cubic metres
- g) Construction and demolition waste 400 cubic metres
- h) WEEE 30 cubic metres
- i) Hard plastics 60 cubic metres
- j) Source separated organic materials 10 cubic metres
- k) MHSW 50 cubic metres

h) Total waste/materials 2240 cubic metres

27. Further to Condition 26k., the 50 m 3 approved quantity of *MHSW* shall be further restricted as follows:

i. Up to 50 vehicle batteries;

- ii. Up to one 250 litre drum of lithium, dry cell and rechargeable batteries;
- iii. Up to 250 litres of empty motor oil containers; and
- iv. Up to 50 units of fluorescent light bulbs.

28. The Owner shall ensure that *limited MHSW* is stored as follows:

i. vehicles batteries shall be stored on pallets in a manner which protects them from the elements; ii. lithium, dry cell and rechargeable batteries shall be bulked into a 250 L plastic or metal drum, either bagged or with the terminal ends of each battery taped over or otherwise stored in a manner which prevents the terminal ends from touching;

iii. empty motor oil containers shall be bulked into a 250 L plastic or metal drum;

iv. fluorescent bulbs shall be stored in a rigid container in a manner which prevents the breakage of bulbs during storage and transport.

29. Municipality shall ensure that all bins used for emptying the underground containers, as described in Item 18 of Schedule "A", properly contain all organic material placed inside.

30. The Municipality shall retain a record of the following information at the Municipality at a location approved by the District Manager:

i) Date the containers are emptied;

ii) Approximate volume transferred to the collection truck per load; and

iii) A record of any spills that occur during emptying and a description outlining any remediation measures that were implemented.

31. The organics collection program shall be operated and maintained in such a manner that does not pose a danger or health risk to the environment or public.

32. An area for the acceptance, storage and preparation for transport for recycling, of waste electrical and electronic equipment (WEEE), and subsequent transfer of such wastes by an approved carrier for disposal elsewhere shall be operated in accordance with the following:

(a) the materials shall be stored: in a roll-off bin (covered), a trailer or other suitable shelter; in an orderly fashion, to avoid breakage (broken materials shall be placed in containers), such that WEEE is sheltered from rain and snow, and as provided under the contractual agreement with the MOE approved program plan administrators.

(b) maximum storage volume is 40 cubic yards;

(c) the Site Plan submitted annually shall show the location of the storage area;

(d) a log shall be kept of the firm used for the transportation and the destination where the waste will be consolidated for recycling, re-use, refurbishment or disposal as per the WEEE Program Plan and in accordance with the Conditions of this Approval.

33. White goods received at the *Transfer Station* which contain refrigerants shall:

a. be stored in an upright position and in such a manner to allow for the safe handling and removal from the *Site* for removal of refrigerants as required by *Ontario Regulation 463/10;* and

b. have refrigerants removed by a licensed technician in accordance with *Ontario Regulation 463/10,* or as amended prior to be transferred form the *Site;* or

c. shall be transferred only to facilities where the refrigerants can removed by a licensed technician in accordance with *Ontario Regulation 463/10.*

34. The Ownershall ensure the following:

i. the Transfer Station shall only accept solid non-hazardous organic waste, stored temporary in two (2) deep-well containers for a period not exceeding 72 hours or disposed more frequently off-site as needed, to prevent odour effects, and/or in storage quantity not exceeding 10 cubic meters at any time. If for any reason waste cannot be transferred from the Transfer Station, the Owner shall cease accepting waste;

ii. the Owner shall ensure that at the end of each day's operation, the organic waste storage containers at the Transfer Station are managed appropriately to prevent blowing litter, and to prevent interference of the waste by rodents, birds, vector/ vermin etc;

iii. organic waste storage containers shall be leaf-proof, lockable and bear resistant; and iv. organic waste being accepted at the Site shall be visually inspected by a Trained Personnel to ensure that the incoming Organic Waste meets the requirements of this Approval .

Waste Storage

35. All recycling bins, roll-off containers and segregated waste storage areas shall be clearly marked

showing the type of waste they are to contain.

36. The operator will monitor segregated waste and reuse areas daily to remove unauthorized materials.

37. The Owner shall ensure that all wastes at the Transfer Station are managed and disposed in accordance with Ontario Regulation 347, R.R.O. 1990, as amended, and the Environmental Protection Act.

38. The Owner shall ensure that the Transfer Station is operated in a safe and secure manner which minimizes the impacts of dust, odour, noise and litter on the general public, site personnel, and the natural environment.

Waste Inspection

39. All waste shall be inspected by *trained personnel* prior to being accepted at the *Transfer Station* to ensure that the waste is of a type approved for acceptance under this *Approval*.

40. The Owner shall conduct daily inspections of the equipment and facilities at the *Transfer Station* to ensure that they are maintained in good working condition at all times. Any deficiencies, which might negatively impact the environment, detected during these inspections shall be recorded in a log, and shall include the following information:

- a. the name and signature of person that conducted the inspection;
- b. the date and time of the inspection;
- c. a list of any deficiencies discovered;
- d. any recommendations for remedial action; and
- e. the date, time and description of actions taken.

Complaints

41. If at any time, the *Municipality* receives complaints regarding the operation of the *Transfer Station*, the *Municipality* shall respond to these complaints according to the following procedure:

a. record and number each complaint, either electronically or in a separate log book, and shall include the following information;

b. the nature of the complaint,

c. if complaint is odour or nuisance related, the weather conditions and wind direction at the time of the complaint;

d. the name, address and the telephone number of the complainant (if provided);

e. the time and date of the complaint;

f. the *Municipality*, upon notification of the complaint, shall initiate appropriate steps to determine all possible causes of the complaint, proceed to take the necessary actions to eliminate the cause of the complaint and forward a formal reply to the complainant; and

g. the *Municipality* shall complete and retain on-site a report with a copy given to the *District Manager* within one (1) week of the complaint date, listing the actions taken to resolve the complaint and any recommendations for remedial measures, and managerial or operational changes to reasonably avoid the recurrence of similar incidents.

42. Seven (7) days following the complaint/s, the *Owner* shall contact the District Manager notifying him of the nature of the complaint and provide him with a written description of the complaint and the actions taken to address the concern(s).

Emergency Management Program

43. Copies of the "Trent Lakes Emergency Management Program B2016-138 dated December 20, 2016", shall be kept on the Site at all times in a central location, available to all staff, in a good state of repair and fully operational.

44. Copies of the Program shall also be submitted to the local Municipality and the Fire Department. Changes to the Emergency Management Program shall be submitted to the *District Manager*. It is the discretion of the *District Manager* if such changes require *Director'* s approval.

45. The Owner shall ensure that all operating personnel are fully trained in the use, and in the procedures to be employed in the event of an emergency;

46. The Owner shall immediately take all measures necessary to contain and clean up any spill or leak which may result from the operation of the *Transfer Station* and report all spills and upsets immediately the ministry's Spills Action Center at 416-325-3000 or 1-800-268-6060, and the Municipality, and shall be recorded in a log book as to the nature of the spill or upset, and the action taken for clean-up, correction and prevention of future occurrences.

47. All waste material resulting from a spill or process upset, shall be managed and disposed of in accordance with Ontario Regulation 347, R.R.O. 1990, as amended.

48. A detailed storm water management plan for the *Transfer Station* facility shall be included in the Closure and Long Term Care and Monitoring Plan for the Landfill Site.

Closure

49. The Owner must submit a written Closure Plan for the Transfer Station as part of the Closure and Long Term Care and Monitoring Plan for the Landfill Site.

50. The Owner must submit, in writing to the Director, a notice stating the Owner's intent to close the Transfer Station one (1) month prior to the closure of the Transfer Station. This notice must include an updated description of the work that will be done to facilitate closure and cleanup of the Transfer Station and a schedule for completion of the work.

51. Within ten (10) days after closure of the Transfer Station, the Owner must notify the Director, in writing, that the facility has been closed in accordance with the approved Closure Plan.

PART 4 - DOCUMENTATION

Daily Log Book (or electronic log)

52. A daily log shall be maintained and shall include the following information:

a. date;

b. types (class and primary characteristic), quantities and source of waste received;

c. quantities and destination of each type of waste shipped from the Transfer Station ;

d. a record of daily inspections required by this Approval;

e. a record of any spills or process upsets at the site, the nature of the spill or process upset and the action taken for the clean up or correction of the spill, the time and date of the spill or process upset, and for spills, the time that the *Ministry* and other persons were notified of the spill in fulfilment of the reporting requirements in the *EPA; and*

f. a record of any waste refusals which shall include: amounts, reasons for refusal and actions taken.

Annual Reporting

53. Beginning July 1, 2003 and by July 1 of each year thereafter, the Owner shall submit to the District Manager, an annual monitoring report to include but not be limited to monthly balance of waste received and transferred from the Transfer Station, a summary of any rejected wastes, a summary of any incidents, a summary of complaints received, a statement as to compliance with all Conditions of this Approval and with the inspection and reporting requirements of the Conditions contained herein, a description of any operational changes and/or Transfer Station improvements undertaken and all other operational issues;

54. The Owner shall maintain on-site a written record of daily inspections of the Transfer Station. This record shall be in the form of a *Transfer Station* Inspection daily log(s) and shall include as a minimum:

(i) date and time of inspection;

(ii) name, title and signature of trained personnel supervising the inspection;

(iii) a listing of all equipment, fencing, gates, etc. inspected and any deficiencies observed;

(iv) any maintenance conducted as a result of these inspections;

(v) recommendations for remedial action and date remedial action, if necessary, was completed;

(vi) date and time of any complaints received at the Site and their nature; and

(vii) date and time of any environmentally significant incidents.

55. The Owner shall maintain a daily written record of the waste received at the Transfer Station, and the waste transferred from the Transfer Station. This record shall be in the form of a Transfer Station daily log(s) and shall include as a minimum the date, quantity and source of waste received and date, quantity and the destination of material removed/transferred from the Site.

56. The Owner shall maintain a written record of the incidental hazardous waste received at the *Transfer Station*, and transferred from the *Transfer Station*. This record shall be in the form of Incidental Hazardous Waste Transfer daily log(s) and shall include as a minimum date, quantity, and source of incidental hazardous waste, date, quantity, type and the destination of incidental hazardous waste transferred from the Site.

This Schedule "A" forms part of Environmental Compliance Approval:

1. Application for Approval of a Waste Disposal Site dated February 2, 2002.

2. Township of Galway-Cavendish and Harvey, North Landfill Site Transfer Station, Design, Operation, Maintenance and Closure Report, prepared by Totten Sims Hubicki Associates, dated February 8, 2002.

3. Letter from Michael Cant of Totten Sims Hubicki Associates to Heather Brodie-Brown of the Ministry of the Environment and Energy, dated June 19, 2002, with details pertaining to, the volume of waste to be stored, the contingency plan and construction schedule, and documents pertaining to the name change for the Township and the contingency and emergency plan.

4. Township of Galway-Cavendish and Harvey, North Landfill Site Transfer Station Safety and Emergency response Procedures.

5. Report entitled "Closure Plan - North Landfill Site" prepared for the Township of Galway-Cavendish and Harvey by TSH dated September 2002.

6. Letter dated June 6, 2003 to Mr. J. Millage, Township of Galway-Cavendish and Harvey from Mr. Jim Hirashi, Ministry of the Environment requesting additional information on contour, monitoring and inspections at the Site.

7. Letter dated August 10, 2006 to Mr. Dale Gable, Ministry of the Environment from Mr. Chris Visser, TSH providing updated drawings for the Existing Site Conditions and Proposed Final Contours.

8. Letter dated August 15, 2006 to Mr. J. Millage, Township of Galway-Cavendish and Harvey from Mr. Dale Gable, Ministry of the Environment providing comments on the amended proposed final contours and the reasonable use criteria at the site.

9. Letter and supporting documentation dated October 5, 2006 addressed to Mr. Dale Gable, Ministry of the Environment from Mr. Chris Visser, TSH providing amended drawings and a response to the additional information request from August 15, 2006. The supporting documentation included the following:

i. Drawing No. 1 - Bobcaygeon (North) Landfill Site Existing Site Plan (Scale 1:500) prepared by TSH (Project No. 52-27858) dated October 4, 2006; and ii. Drawing No. 2 - Bobcaygeon (North) Landfill Site Proposed Final Contours (Scale 1:500) prepared by TSH (Project No. 52-27858) dated October 4, 2006.

10. Letter and supporting documentation dated October 19, 2006 addressed to Mr. Dale Gable, Ministry of the Environment from Mr. Chris Visser, TSH providing additional information for the requested addendum to permit the chipping and storage of wood waste at the Transfer Station. The supporting documentation includes the following:

i. Drawing No. 2 - Bobcaygeon (North) Landfill Site Proposed Final Contours (Scale 1:500) prepared by TSH (Project No. 52-27858) dated October 19, 2006.

11. Application for an Approval for a Waste Disposal Site, signed by Ms. Pat Kemp, CAO/Clerk and dated April 6, 2006.

12. Letter to Mr. James O'Mara (MOE) from Mr. Michael Cant (TSH) regarding the submission of an application for the establishment and operation of a Household Hazardous Waste Collection Facility at Bobcaygeon Transfer Station.

13. Letter to Mr. Matthew Chisholm (MOE) from Ms. Colleen Carter, P.Eng. (TSH) dated May 8, 2006 regarding notification letter to adjacent landowners/tenants with distribution list and HHW facility layout.

14. Letter dated June 28, 3006 to Mr. Richard Saunders, P.Eng. (MOE) from Mr. Chris Visser (TSH) regarding waste classes being approved, emergency response plans, waste storage containers and containment areas, and response to the adjacent landowners comments.

15. Email dated July 21, 2006 to Mr. Richard Saunders, P.Eng. from Mr. Chris Visser (TSH) regarding the flammable drum storage area.

16. Fax dated July 24, 2006 to Mr. Richard Saunders, P.Eng. (MOE) from Mr. Chris Visser (TSH) regarding the maximum waste storage volumes.

17. Letter dated July 28, 2006 to Mr. Richard Saunders, P.Eng. (MOE) from Mr. Chris Visser (TSH) regarding site plan and updated waste class list and HHW Operation Manual and includes the

following:

a. Drawing No. 1 entitled "Bobcaygeon Transfer Station, Household Hazardous Waste Facility" prepared by TSH dated July 2006.

b. Report entitled "County of Peterborough, HHW Operation Manual, 2006 Season" complied and supplied by the County of Peterborough.

18. Letter dated June 9, 2008 requesting an amendment to an existing Approval, signed by Catrina Switzer, Environmental Services, County of Peterborough, including all supporting information.

19. Application for a Approval for a Waste Disposal Site dated June14, 2010, signed by Pat Kemp, Chief Administrative Officer, The Corporation of the Municipality of Trent Lakes , including all documents attached to this application.

20. E-mail dated June 18, 2010, including all attachments to the e-mail, from Laurie Westaway, County of Peterborough (Project Technical Information Contact) to Nihar Bhatt, Ontario Ministry of the Environment, providing electronic copies of the appendices to the Operations Manual for the Site.

21. Environmental Compliance Approval Application, with Design and Operations Report, Maps and other supporting documentation to amend ECA, dated May 10, 2016 and signed by Lois O'Neill-Jackson, CAO/Economic Development Officer., Municipality of Trent Lakes.

22. Email, dated September 18, 2017, from David Bucholtz, General Manager, Cambium Inc., providing feedback on updated changes to the MHSW program.

The reasons for the imposition of these terms and conditions are as follows:

1. The reason for Condition 1 is to simplify the wording of the subsequent conditions and define the specific meaning of terms as used in this Approval.

2. The reasons for Conditions 2, 3, 4 5, 6, 7, 8, 9, 10 and 11 are to clarify the legal rights and responsibilities of the Owner and Operator.

3. The reasons for Condition 12 and 13 is to ensure the Director is notified of the change in Ownership of the Site.

4. The reasons for Condition 14, 15 and 16 are to ensure the Owner closes the Site as per the submitted information in Schedule "A". This is to ensure the long-term health and safety of the public and the environment.

5. The reason for Condition 17 is to ensure the Owner installs the environmental monitoring wells and conducts environmental monitoring at the site as per the Ministry's recommendations. This is to ensure the long-term health and safety of the public and the environment.

6. The reasons for Condition 18 is to permit the Owner to chip and store wood waste material on-site for up to one year. The condition also establishes a maximum amount of waste that can be stored on-site. This is to ensure the long-term health and safety of the public and the environment.

7. The reason for Condition 19 is to ensure the Owner submits an annual report to the Ministry of the Environment that describes the monitoring and remedial work that occurs at the site. This is to ensure the long-term health and safety of the public and environment

8. The reason for Condition 20 is to ensure that the Transfer Station is operated in accordance with the application and supporting documentation submitted by the Company, and not in a manner which the

Director has not been asked to consider.

9. The reason for Condition 22 and 23 is to establish the hours of operation for the Transfer Station.

10. The reason for Conditions 21, and 24 through to 34 is to ensure that the types and amounts of waste received at the Site are in accordance with that considered by the Director and approved under this Approval. Condition 21 is also to ensure that an approved end disposal site is available for the waste stored at the Transfer Station.

11. The reason for Conditions 35 through to 38 is to establish the storage location and disposal of wastes on Site

on Site.

12. The reason for Conditions 39 and 40 is to ensure that detailed records of Site inspections are recorded and maintained at the Transfer Station for inspection and information purposes.

13. The reason for Condition 41 and 42 is to ensure that any complaints regarding operations at the Transfer Station are responded to in a timely manner.

14. The reasons for Conditions 43 through to 48 are to ensure that an Emergency Management Program is developed and maintained at the Transfer Station and that staff are properly trained in the operation of the equipment used at the Site. Also, the local fire department should be aware of the Emergency Management Program.

15. The reasons for Conditions 49, 50 and 51 are to ensure that the Transfer Station is closed in accordance with Ministry standards and to protect the health and safety of the public and the environment.

16. The reasons for Condition 52, 53, 54, 55 and 56 is to ensure that regular review of site development, operations and monitoring data is documented and any possible improvements to site design, operations or monitoring programs are identified. An annual report is an important tool used in reviewing site activities and for determining the effectiveness of site design.

Upon issuance of the environmental compliance approval, I hereby revoke Approval No(s). A341307 issued on March 11, 2011.

In accordance with Section 139 of the Environmental Protection Act, you may by written Notice served upon me and the Environmental Review Tribunal within 15 days after receipt of this Notice, require a hearing by the Tribunal. Section 142 of the Environmental Protection Act provides that the Notice requiring the hearing shall state:

- a. The portions of the environmental compliance approval or each term or condition in the environmental compliance approval in respect of which the hearing is required, and;
- b. The grounds on which you intend to rely at the hearing in relation to each portion appealed.

Pursuant to subsection 139(3) of the Environmental Protection Act, a hearing may not be required with respect to any terms and conditions in this environmental compliance approval, if the terms and conditions are substantially the same as those contained in an approval that is amended or revoked by this environmental compliance approval.

The Notice should also include:

- 1. The name of the appellant;
- 2. The address of the appellant;
- 3. The environmental compliance approval number;
- 4. The date of the environmental compliance approval;
- 5. The name of the Director, and;
- 6. The municipality or municipalities within which the project is to be engaged in.

And the Notice should be signed and dated by the appellant.

This Notice must be served upon:

The Secretary* Environmental Review Tribunal 655 Bay Street, Suite 1500 Toronto, Ontario M5G 1E5	AND	The Director appointed for the purposes of Part II.1 of the Environmental Protection Act Ministry of the Environment and Climate Change 135 St. Clair Avenue West, 1st Floor Toronto, Ontario M4V 1P5
--	-----	--

* Further information on the Environmental Review Tribunal's requirements for an appeal can be obtained directly from the Tribunal at: Tel: (416) 212-6349, Fax: (416) 326-5370 or www.ert.gov.on.ca

The above noted activity is approved under s.20.3 of Part II.1 of the Environmental Protection Act.

DATED AT TORONTO this 2nd day of October, 2017

Dale Gable, P.Eng. Director appointed for the purposes of Part II.1 of the *Environmental Protection Act*

CJ/ c: District Manager, MOECC Peterborough Dave Bucholtz, Cambium Inc.

Appendix B Field and Precipitation Data

DATE: April 20, 2020

WEATHER (SAMPLE DAY): -7°C Sun 8°C

CAMBIUM

PROJECT NUMBER: 10520-005

SAMPLED BY: <u>N. Morin</u> and M. Pion

WEATHER (PREVIOUS DAY): 6°C ~5mm Rain

Sample	Water	B.H. Denth	B.H. Dia	Stick	Purge Vo	olumes (L)	Temp	рН	Cond.	DO	ORP	LFG			Obse	rvations	
Location	Level	(m)	(mm)	(m)	Needed	Actual	(°C)	(units)	(µS/cm)	(mg/L)	(mV)	(ppm)	Clarity	Colour	Odour	Sheen	Other
00-1-U	4.12	8.63	50.8	0.71	28	28	9.9	7.84	510	9.81	66	<5	Clear	None	None	None	
00-1-M	4.19	13.00	50.8	0.70	54	Dry x 1 15	7.9	7.83	860	6.22	144	15	Clear	None	None	None	
00-1-L	10.30	19.13	50.8	0.70	54	Dry x 1 19	9.1	7.93	920	6.47	154	35	Clear	Yellow	None	None	
97-1-U	4.10	7.24	50.8	0.64	20	Dry x 1 9	7.4	7.23	1220	7.24	67	<5	Opaque	Grey	None	None	
97-1-M	5.74	11.65	50.8	0.62	36	Dry x 1 17	9.3	7.78	660	8.55	65	<5	Clear	None	None	None	
97-1-L	6.45	17.77	50.8	0.64	69	Dry x 1 25	10.4	8.15	520	8.92	49	<5	Clear	None	None	None	
97-2-U	8.07	9.37	50.8	0.85	8	8	10.3	7.20	940	6.47	122	85	Clear	None	None	None	
97-2-L	12.73	14.18	50.8	0.85	9	9	10.5	8.46	670	10.37	37	55	Cloudy	None	None	None	
97-3	4.45	5.57	50.8	0.74	7	7	9.7	6.86	1150	3.52	156	<5	Clear	None	None	None	QA/QC #1
98-1-U	3.89	5.80	50.8	0.83	12	12	8.1	6.84	730	1.91	68	<5	Clear	None	None	None	
98-1-M	5.14	9.96	50.8	0.82	30	Dry x 1 10	9.2	8.30	600	8.60	49	<5	Clear	None	None	None	
98-1-L	3.28	14.24	50.8	0.82	67	Dry x 1 24	8.7	8.40	700	8.46	64	<5	Clear	None	None	None	
98-2-U	4.70	10.94	50.8	0.79	38	38	8.1	7.04	740	6.72	75	<5	Cloudy	Brown	None	None	
98-2-M	9.47	16.37	50.8	0.80	43	Dry x 1 15	8.1	8.06	6108	7.63	72	<5	Cloudy	None	None	None	
98-2-L	5.86	23.71	50.8	0.81	109	Dry x 1 43	7.8	7.63	1400	8.56	84	<5	Cloudy	Grey	None	None	
98-3-U	3.97	8.24	50.8	0.78	26	26	7.8	7.05	830	2.80	75	<5	Cloudy	Brown	None	None	QA/QC #2

DATE: April 20, 2020

WEATHER (SAMPLE DAY): -7°C Sun 8°C

PROJECT NUMBER: 10520-005

SAMPLED BY: N. Morin and M. Pion

WEATHER (PREVIOUS DAY): 6°C ~5mm Rain

Sample	Water	B.H. Depth	B.H. Dia	Stick	Purge Vo	olumes (L)	Temp	рН	Cond.	DO	ORP	LFG			Obse	rvations	
Location	Level	(m)	(mm)	(m)	Needed	Actual	(°C)	(units)	(µ/cmS)	(mg/L)	(mV)	(ppm)	Clarity	Colour	Odour	Sheen	Other
98-3-M	5.34	13.29	50.8	0.77	49	Dry x 1 18	9.1	8.51	490	8.65	44	<5	Clear	None	None	None	
98-3-L	6.52	18.21	50.8	0.77	72	Dry x 1 24	8.9	8.34	600	8.03	70	<5	Cloudy	Grey	None	None	
BH16-1S	4.45	8.00	38.1	0.80	13	Dry x 1 7	9.3	7.65	880	10.31	154	55	Opaque	Grey	None	None	
BH16-1D	5.29	16.02	38.1	0.47	37	37	10.5	7.87	750	1.86	160	75	Cloudy	Grey	Sulphur	None	

DATE: November 09, 2020

WEATHER (SAMPLE DAY): 4°C Sun and Cloud 19°C

BIUM PROJECT NUMBER: 10520-005

SAMPLED BY: R. Doyle + N. Morin

WEATHER (PREVIOUS DAY): 15°C Sun

Sample	Water	B.H. Denth	B.H. Dia	Stick	Purge Vo	lumes (L)	Temp	pН	Cond.	DO	ORP	LFG			Obs	ervations	
Location	Level	(m)	(mm)	(m)	Needed	Actual	(°C)	(units)	(µS/cm)	(mg/L)	(mV)	(ppm)	Clarity	Colour	Odour	Sheen	Other
00-1-U	3.14	3.46	50.8	0.71	2	-	9.1	7.13	1178	3.74	106	15	Cloudy	Grey	None	None	
00-1-M	5.88	13.00	50.8	0.70	44	Dry x 1 15	8.2	7.45	892	7.94	63	20	Cloudy	Grey	None	None	
00-1-L	9.17	19.13	50.8	0.70	61	Dry x 1 23	10.4	7.48	690	6.85	260	20	Clear	None	None	None	
97-1-U	5.51	7.24	50.8	0.64	11	Dry x 1 6	13.7	6.81	838	5.37	255	<5	Opaque	Grey	None	None	
97-1-M	7.98	11.65	50.8	0.62	23	Dry x 1 11	10.4	7.43	506	6.60	275	<5	Cloudy	Grey	None	None	
97-1-L	8.00	17.77	50.8	0.64	60	Dry x 1 20	11.1	7.23	513	7.84	275	<5	Cloudy	Grey	None	None	
97-2-U	8.63	9.37	50.8	0.85	4.5	5	9.8	6.76	1926	2.94	103	<5	Cloudy	None	None	None	
97-2-L	12.85	14.18	50.8	0.85	9	Dry x 1 5.5	9.3	7.77	633	11.01	68	<5	Cloudy	Grey	None	None	
97-3	4.62	5.57	50.8	0.74	6	Dry x 1 3	13.7	6.64	1343	2.12	98	<5	Clear	None	Swampy	None	QA/QC #1
98-1-U	4.57	5.80	50.8	0.83	8	Dry x 1 3	10.4	6.69	890	4.42	261	<5	Cloudy	None	None	None	
98-1-M	5.61	9.96	50.8	0.82	27	Dry x 1 10	9.7	7.45	546	8.46	253	<5	Cloudy	Grey	None	None	
98-1-L	7.22	14.24	50.8	0.82	43	Dry x 1 15	9.2	7.72	748	6.41	252	<5	Cloudy	None	None	None	
98-2-U	7.51	10.94	50.8	0.79	21	Dry x 1 10	9.3	6.93	888	4.75	247	<5	Opaque	Grey	None	None	
98-2-M	9.28	16.37	50.8	0.80	44	Dry x 1 17	9.2	7.15	464	5.55	239	10	Clear	None	None	None	
98-2-L	9.43	23.71	50.8	0.81	87	87	9.2	7.10	1621	3.25	248	15	Clear	None	Sulphur	None	
98-3-U	5.15	8.24	50.8	0.78	19	19	10.9	6.92	602	6.70	263	<5	Opaque	Red- brown	None	None	QA/QC #2

DATE: November 09, 2020

WEATHER (SAMPLE DAY): 4°C Sun and Cloud 19°C

PROJECT NUMBER: 10520-005

SAMPLED BY: R. Doyle + N. Morin

WEATHER (PREVIOUS DAY): 15°C Sun

Sample	Water	B.H. Denth	B.H. Dia	Stick	Purge Vo	olumes (L)	Temp	рН	Cond.	DO	ORP	LFG			Obs	ervations	
Location	Level	(m)	(mm)	(m)	Needed	Actual	(°C)	(units)	(µS/cm)	(mg/L)	(mV)	(ppm)	Clarity	Colour	Odour	Sheen	Other
98-3-M	7.82	13.29	50.8	0.77	34	Dry x 1 12	9.9	7.77	440	5.15	250	<5	Clear	None	None	None	
98-3-L	8.48	18.21	50.8	0.77	60	Dry x 1 23	11.5	7.80	613	10.34	258	<5	Opaque	Grey	None	None	
BH16-1S	5.17	8.00	38.1	0.80	10	Dry x 1 3	12.4	7.41	823	11.23	78	<5	Cloudy	Grey	None	None	
BH16-1D	8.80	16.02	38.1	0.47	25	25	11.0	7.67	728	4.07	69	<5	Cloudy	Grey	Sulphur	None	

*

Government Gouvernement of Canada du Canada

<u>Home</u> >

Environment and natural resources > Weather, Climate and Hazard

and Hazard > Past weather and climate

> Historical Data

Daily Data Report for April 2020

PETERBOROUGH A ONTARIO Current <u>Station Operator: NAVCAN</u>

<u>Latitude</u>	:	44 <u>°</u> 13	48.000 <u>" N</u>	<u>Longit</u>	ude:	78 <u>°</u> 21	48.000" <u>W</u>	<u>Eleva</u>	<u>tion</u> :	191.40 <u>m</u>	
<u>Climate</u>]	<u>(D</u> :	61664	15	<u>WMO I</u>	<u>D</u> :	71436		<u>TC ID</u>	:	YPQ	
DAY	<u>Max</u> <u>Temp</u> ℃	<u>Min</u> <u>Temp</u> ℃	<u>Mean</u> <u>Temp</u> ℃	<u>Heat Deg</u> <u>Days</u> Jul	<u>Cool Deg</u> <u>Days</u> Lul	<u>Total</u> <u>Rain</u> <u>mm</u> เม	<u>Total</u> <u>Snow</u> <u>cm</u> เม	<u>Total</u> <u>Precip</u> <u>mm</u> ыц	Snow on Grnd CM	<u>Dir of Max</u> <u>Gust</u> 10's deg	<u>Spd of Max</u> <u>Gust</u> km/h யி
<u>01</u>	10.8	-1.7	4.6	13.4	0.0			0.0		34	33
<u>02</u>	13.8	-3.3	5.3	12.7	0.0			0.0		31	45
<u>03</u>	10.4	1.7	6.1	11.9	0.0			2.2		2	35
<u>04</u>	12.0	4.3	8.2	9.8	0.0			0.0		M	M
<u>05</u>	10.8	0.1	5.5	12.5	0.0			0.0		30	41
<u>06</u>	13.8	-4.0	4.9	13.1	0.0			0.0		29	42
<u>07</u>	15.4	-2.1	6.7	11.3	0.0			3.2		M	M
<u>08</u>	10.8	0.8	5.8	12.2	0.0			0.0		27	42
<u>09</u>	7.9	0.7	4.3	13.7	0.0			12.2		27	65
<u>10</u>	8.0	-0.1	4.0	14.0	0.0			0.0		32	68
<u>11</u>	8.2	-2.4	2.9	15.1	0.0			0.0		27	54
<u>12</u>	13.1	-2.7	5.2	12.8	0.0			0.0		<u>M</u>	<u>M</u>
<u>13</u>	14.6	1.9	8.3	9.7	0.0			13.7		26	72
<u>14</u>	6.4	-2.9	1.8	16.2	0.0			0.8		29	48
<u>15</u>	2.9	-6.9	-2.0	20.0	0.0			0.2		29	48
<u>16</u>	4.8	-4.9	-0.1	18.1	0.0			0.0		29	58
<u>17</u>	6.6	-6.5	0.1	17.9	0.0			0.0		18	37
<u>18</u>	9.9	-6.2	1.9	16.1	0.0			0.0		19	41
<u>19</u>	10.4	-1.9	4.3	13.7	0.0			4.5		23	54
<u>20</u>	7.1	-5.0	1.1	16.9	0.0			0.0		15	33
<u>21</u>	6.3	-3.9	1.2	16.8	0.0			0.5		27	80
<u>22</u>	3.2	-5.5	-1.2	19.2	0.0			0.0		28	63
<u>23</u>	8.7	-8.0	0.4	17.6	0.0			0.0		<u>M</u>	<u>M</u>
<u>24</u>	8.4	-1.7	3.4	14.6	0.0			0.0		5	35
<u>25</u>	16.4	-5.1	5.7	12.3	0.0			0.0		M	<u>M</u>
<u>26</u>	11.0	6.1	8.6	9.4	0.0			0.0		5	63
<u>27</u>	15.9	2.3	9.1	8.9	0.0			0.0		16	32
<u>28</u>	12.9	1.2	7.1	10.9	0.0			0.0		M	<u>M</u>
<u>29</u>	15.4	1.3	8.4	9.6	0.0			3.8		13	48
<u>30</u>	<u>M</u>	<u>M</u>	<u>M</u>	<u>M</u>	<u>M</u>			<u>M</u>		13	45
Sum				400.4 <u>^</u>	0.0 <u>^</u>			41.1 <u>^</u>			
Avg	10.2 <u>^</u>	-1.9 <u>^</u>	4.2 <u>^</u>								

Daily Data Report for April 2020 - Climate - Environment and Climate Change Canada

DAY	<u>Max</u> <u>Temp</u> ℃	<u>Min</u> <u>Temp</u> ℃ ∠	<u>Mean</u> <u>Temp</u> <u>°C</u> ☑	<u>Heat Deg</u> <u>Days</u> ोगी	<u>Cool Deg</u> <u>Days</u> Iıll	<u>Total</u> <u>Rain</u> mm ाम	<u>Total</u> <u>Snow</u> <u>cm</u> ।॥।	<u>Total</u> <u>Precip</u> <u>mm</u> الال	<u>Snow on</u> <u>Grnd</u> <u>cm</u> ച്ച	<u>Dir of Max</u> <u>Gust</u> 10's deg	<u>Spd of Max</u> <u>Gust</u> km/h பி
Xtrm	16.4 <u>^</u>	-8.0 <u>^</u>								27 <u>^</u>	80 <u>^</u>
Summa	ary, avera <u>c</u>	ge and extr	eme values	are based on	the data abov	ve.					

	Legend
 A = Accumulated C = Precipitation occurred, amount uncertain E = Estimated F = Accumulated and estimated L = Precipitation may or may not have occurred M = Missing N = Temperature missing but known to be > 0 	 S = More than one occurrence T = Trace Y = Temperature missing but known to be < 0 [empty] = Indicates an unobserved value ^ = The value displayed is based on incomplete data t = Data that is not subject to review by the National Climate Archives

Date modified:

2020-09-17

Government Gouvernement du Canada

Home > Environment and natural resources

> Weather, Climate and Hazard

nd Hazard > Past weather and climate

> Historical Data

Daily Data Report for November 2020

PETERBOROUGH A ONTARIO Current <u>Station Operator: NAVCAN</u>

<u>Latitude</u>	:	44 <u>°</u> 13	<u>48.000" N</u>	<u>Longit</u>	ude:	78 <u>°</u> 21	48.000" <u>W</u>	<u>Eleva</u>	<u>tion</u> :	191.40 <u>m</u>	
Climate I	<u>ID</u> :	61664	15	<u>WMO I</u>	<u>D</u> :	71436		<u>TC ID</u>	:	YPQ	
DAY	<u>Max</u> <u>Temp</u> ℃	<u>Min</u> <u>Temp</u> ℃	Mean <u>Temp</u> °C	Heat Deg Days	<u>Cool Deg</u> <u>Days</u> Lul	<u>Total</u> <u>Rain</u> mm பப	<u>Total</u> <u>Snow</u> .cm	<u>Total</u> <u>Precip</u> <u>mm</u> ।॥।	Snow on Grnd CM	<u>Dir of Max</u> <u>Gust</u> 10's deg	Spd of Max Gust km/h Lul
<u>01</u>	8.8	-0.3	4.3	13.7	0.0			5.6		31	65
<u>02</u>	5.8	-4.2	0.8	17.2	0.0			0.4		31	78
<u>03</u>	5.8	-2.3	1.8	16.2	0.0			0.2		32	58
<u>04</u>	16.7	-4.4	6.2	11.8	0.0			0.0		21	59
<u>05</u>	18.9	9.3	14.1	3.9	0.0			0.0		21	41
<u>06</u>	20.6	1.7	11.2	6.8	0.0			0.0		27	35
<u>07</u>	21.6	1.7	11.7	6.3	0.0			0.0		22	35
<u>08</u>	21.6	-0.4	10.6	7.4	0.0			0.0		<u>M</u>	<u>M</u>
<u>09</u>	21.5	1.7	11.6	6.4	0.0			0.0		M	M
<u>10</u>	22.5	2.6	12.6	5.4	0.0			0.0		20	35
<u>11</u>	20.1	3.7	11.9	6.1	0.0			0.0		27	48
<u>12</u>	9.7	-4.1	2.8	15.2	0.0			0.0		M	M
<u>13</u>	7.4	-4.0	1.7	16.3	0.0			0.0		31	46
<u>14</u>	7.5	-6.0	0.8	17.2	0.0			0.0		28	39
<u>15</u>	10.5	-3.5	3.5	14.5	0.0			7.6		26	81
<u>16</u>	5.3	1.4	3.4	14.6	0.0			0.0		25	55
<u>17</u>	2.2	-7.0	-2.4	20.4	0.0			0.2		28	61
<u>18</u>	-1.4	-9.0	-5.2	23.2	0.0			0.0		34	37
<u>19</u>	12.7	-3.4	4.7	13.3	0.0			0.0		22	55
<u>20</u>	17.0	4.2	10.6	7.4	0.0			0.0		22	45
<u>21</u>	5.0	0.4	2.7	15.3	0.0			0.0		30	41
<u>22</u>	1.6	-2.7	-0.6	18.6	0.0			16.1		7	32
<u>23</u>	2.9	-1.6	0.7	17.3	0.0			0.0		31	37
<u>24</u>	<u>M</u>	<u>M</u>	<u>M</u>	<u>M</u>	<u>M</u>			<u>M</u>		<u>M</u>	<u>M</u>
<u>25</u>	5.3	-3.4	1.0	17.0	0.0			4.9		<u>M</u>	M
<u>26</u>	8.3	3.3	5.8	12.2	0.0			0.0		27	32
<u>27</u>	6.7	3.0	4.9	13.1	0.0			0.0		M	M
<u>28</u>	6.7	1.3	4.0	14.0	0.0			0.5		28	41
<u>29</u>	9.8	-4.1	2.9	15.1	0.0			0.0		20	37
<u>30</u>	3.7	-1.1	1.3	16.7	0.0			19.5		1	37
Sum				382.6 <u>^</u>	0.0 <u>^</u>			55.0 <u>^</u>			
Avg	10.5 <u>^</u>	-0.9 <u>^</u>	4.8 <u>^</u>								
Daily Data Report for November 2020 - Climate - Environment and Climate Change Canada

DAY	<u>Max</u> <u>Temp</u> <u>°C</u> ☑	<u>Min</u> <u>Temp</u> ℃ ✓	Mean <u>Temp</u> °C	<u>Heat Deg</u> <u>Days</u> اللا	<u>Cool Deg</u> <u>Days</u> பி	<u>Total</u> <u>Rain</u> mm ्रिम	<u>Total</u> <u>Snow</u> _ <u>cm</u> _เป	<u>Total</u> <u>Precip</u> <u>mm</u> اللا	<u>Snow on</u> <u>Grnd</u> cm հել	<u>Dir of Max</u> <u>Gust</u> 10's deg	<u>Spd of Max</u> <u>Gust</u> <u>km/h</u> பி
Xtrm	22.5 <u>^</u>	-9.0 <u>^</u>	movaluor	are based on	the data abo	10				26 <u>^</u>	81 <u>^</u>
Summa	ary, averag	e and extr	eme values	s are based on	the data abov	/e.					

	Legend
 A = Accumulated C = Precipitation occurred, amount uncertain E = Estimated F = Accumulated and estimated L = Precipitation may or may not have occurred M = Missing N = Temperature missing but known to be > 0 	 S = More than one occurrence T = Trace Y = Temperature missing but known to be < 0 [empty] = Indicates an unobserved value ^ = The value displayed is based on incomplete data † = Data that is not subject to review by the National Climate Archives

Date modified:

2020-09-17

Appendix C Laboratory Certificates of Analysis

Final Report

C.O.C.: G93109

Report To:

Cambium Environmental PO Box 325, 52 Hunter Street East Peterborough ON K9H 1G5 Canada <u>Attention:</u> Stephanie Reeder

DATE RECEIVED: 21-Apr-20 DATE REPORTED: 28-Apr-20

SAMPLE MATRIX: Groundwater

REPORT No. B20-10308

Caduceon Environmental Laboratories 285 Dalton Ave Kingston Ontario K7K 6Z1 Tel: 613-544-2001 Fax: 613-544-2770 JOB/PROJECT NO.: Bobcaygeon WDS P.O. NUMBER: 10520-005 WATERWORKS NO.

			Client I.D.		98-2-U	98-2-M	98-2L	98-3-U
			Sample I.D.		B20-10308-1	B20-10308-2	B20-10308-3	B20-10308-4
			Date Collect	ed	20-Apr-20	20-Apr-20	20-Apr-20	20-Apr-20
Parameter	Units	R.L.	Reference Method	Date/Site Analyzed				
Alkalinity(CaCO3) to pH4.5	mg/L	5	SM 2320B	22-Apr-20/O	325	192	222	377
Conductivity @25°C	µmho/cm	1	SM 2510B	22-Apr-20/O	950	566	2090	1250
pH @25°C	pH Units		SM 4500H	22-Apr-20/O	7.57	7.76	7.62	7.43
Total Dissolved Solids	mg/L	3	SM 2540D	23-Apr-20/O	505	293	1150	677
Total Suspended Solids	mg/L	3	SM2540D	22-Apr-20/K				
Dissolved Organic Carbon	mg/L	0.2	EPA 415.2	22-Apr-20/O	2.0	1.5	1.6	3.3
BOD(5 day)	mg/L	3	SM 5210B	22-Apr-20/K				
COD	mg/L	5	SM 5220D	23-Apr-20/O	8	< 5	< 5	24
Chloride	mg/L	0.5	SM4110C	23-Apr-20/O	93.9	17.9	79.8	163
Ammonia (N)-Total	mg/L	0.01	SM4500- NH3-H	22-Apr-20/K	0.03	< 0.01	0.29	0.02
Sulphate	mg/L	1	SM4110C	23-Apr-20/O	27	74	966	22
Nitrate (N)	mg/L	0.05	SM4110C	23-Apr-20/O	1.36	0.11	< 0.05	1.01
Hardness (as CaCO3)	mg/L	1	SM 3120	22-Apr-20/O	473	284	1270	550
Barium	mg/L	0.001	SM 3120	22-Apr-20/O	0.144	0.031	0.014	0.235
Boron	mg/L	0.005	SM 3120	22-Apr-20/O	0.076	0.351	2.04	0.028
Calcium	mg/L	0.02	SM 3120	22-Apr-20/O	176	68.7	306	202
Iron	mg/L	0.005	SM 3120	22-Apr-20/O	0.867	0.005	1.03	< 0.005
Magnesium	mg/L	0.02	SM 3120	22-Apr-20/O	7.92	27.2	122	10.9
Manganese	mg/L	0.001	SM 3120	22-Apr-20/O	0.079	< 0.001	0.060	0.003
Sodium	mg/L	0.2	SM 3120	22-Apr-20/O	65.8	17.0	78.7	86.5

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an * Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie

Michelle Dubien Lab Manager

Final Report

C.O.C.: G93109

Report To:

Cambium Environmental PO Box 325, 52 Hunter Street East Peterborough ON K9H 1G5 Canada <u>Attention:</u> Stephanie Reeder

DATE RECEIVED: 21-Apr-20 DATE REPORTED: 28-Apr-20

SAMPLE MATRIX: Groundwater

REPORT No. B20-10308

Caduceon Environmental Laboratories 285 Dalton Ave Kingston Ontario K7K 6Z1 Tel: 613-544-2001 Fax: 613-544-2770 JOB/PROJECT NO.: Bobcaygeon WDS P.O. NUMBER: 10520-005 WATERWORKS NO.

			Client I.D.		98-3-M	98-3-L	QA/QC #2	98-1-U
			Sample I.D.		B20-10308-5	B20-10308-6	B20-10308-7	B20-10308-8
			Date Collect	ed	20-Apr-20	20-Apr-20	20-Apr-20	20-Apr-20
Parameter	Units	R.L.	Reference Method	Date/Site Analyzed			•	
Alkalinity(CaCO3) to pH4.5	mg/L	5	SM 2320B	22-Apr-20/O	209	165	379	418
Conductivity @25°C	µmho/cm	1	SM 2510B	22-Apr-20/O	546	754	1260	1150
pH @25°C	pH Units		SM 4500H	22-Apr-20/O	7.84	7.90	7.44	7.41
Total Dissolved Solids	mg/L	3	SM 2540D	23-Apr-20/O	283	394	683	620
Total Suspended Solids	mg/L	3	SM2540D	22-Apr-20/K				
Dissolved Organic Carbon	mg/L	0.2	EPA 415.2	22-Apr-20/O	1.5	1.5	3.4	4.9
BOD(5 day)	mg/L	3	SM 5210B	22-Apr-20/K				
COD	mg/L	5	SM 5220D	23-Apr-20/O	< 5	10	26	12
Chloride	mg/L	0.5	SM4110C	23-Apr-20/O	11.0	6.7	166	80.6
Ammonia (N)-Total	mg/L	0.01	SM4500- NH3-H	22-Apr-20/K	< 0.01	0.03	0.03	1.52
Sulphate	mg/L	1	SM4110C	23-Apr-20/O	84	215	22	44
Nitrate (N)	mg/L	0.05	SM4110C	23-Apr-20/O	0.13	0.09	1.01	3.35
Hardness (as CaCO3)	mg/L	1	SM 3120	22-Apr-20/O	281	289	544	528
Barium	mg/L	0.001	SM 3120	22-Apr-20/O	0.024	0.016	0.241	0.203
Boron	mg/L	0.005	SM 3120	22-Apr-20/O	0.272	0.589	0.028	0.206
Calcium	mg/L	0.02	SM 3120	22-Apr-20/O	63.4	71.2	200	194
Iron	mg/L	0.005	SM 3120	22-Apr-20/O	< 0.005	< 0.005	< 0.005	0.096
Magnesium	mg/L	0.02	SM 3120	22-Apr-20/O	29.7	27.1	10.7	10.5
Manganese	mg/L	0.001	SM 3120	22-Apr-20/O	0.001	0.001	0.003	0.023
Sodium	mg/L	0.2	SM 3120	22-Apr-20/O	11.9	65.9	87.8	61.6

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an * Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie

Michelle Dubien Lab Manager

Final Report

C.O.C.: G93109

Report To:

Cambium Environmental PO Box 325, 52 Hunter Street East Peterborough ON K9H 1G5 Canada <u>Attention:</u> Stephanie Reeder

DATE RECEIVED: 21-Apr-20 DATE REPORTED: 28-Apr-20

SAMPLE MATRIX: Groundwater

REPORT No. B20-10308

Caduceon Environmental Laboratories 285 Dalton Ave Kingston Ontario K7K 6Z1 Tel: 613-544-2001 Fax: 613-544-2770 JOB/PROJECT NO.: Bobcaygeon WDS P.O. NUMBER: 10520-005 WATERWORKS NO.

			Client I.D.		98-1-M	98-1-L	BH16-2	BH16-1
			Sample I.D.		B20-10308-9	B20-10308- 10	B20-10308- 11	B20-10308-12
			Date Collect	ed	20-Apr-20	20-Apr-20	20-Apr-20	20-Apr-20
Parameter	Units	R.L.	Reference Method	Date/Site Analyzed				
Alkalinity(CaCO3) to pH4.5	mg/L	5	SM 2320B	22-Apr-20/O	247	162	210	336
Conductivity @25°C	µmho/cm	1	SM 2510B	22-Apr-20/O	698	1080	687	814
pH @25°C	pH Units		SM 4500H	22-Apr-20/O	7.84	7.86	7.97	7.85
Total Dissolved Solids	mg/L	3	SM 2540D	23-Apr-20/O	363	581	357	428
Total Suspended Solids	mg/L	3	SM2540D	22-Apr-20/K				
Dissolved Organic Carbon	mg/L	0.2	EPA 415.2	22-Apr-20/O	2.9	1.3	1.6	5.6
BOD(5 day)	mg/L	3	SM 5210B	22-Apr-20/K				
COD	mg/L	5	SM 5220D	23-Apr-20/O	< 5	< 5	7	22
Chloride	mg/L	0.5	SM4110C	23-Apr-20/O	18.1	7.1	18.9	22.3
Ammonia (N)-Total	mg/L	0.01	SM4500- NH3-H	22-Apr-20/K	0.02	0.06	0.06	0.03
Sulphate	mg/L	1	SM4110C	23-Apr-20/O	90	426	126	59
Nitrate (N)	mg/L	0.05	SM4110C	23-Apr-20/O	0.11	0.08	< 0.05	1.26
Hardness (as CaCO3)	mg/L	1	SM 3120	22-Apr-20/O	350	468	347	408
Barium	mg/L	0.001	SM 3120	22-Apr-20/O	0.071	0.017	0.020	0.107
Boron	mg/L	0.005	SM 3120	22-Apr-20/O	0.289	0.807	0.601	0.203
Calcium	mg/L	0.02	SM 3120	22-Apr-20/O	94.0	98.6	70.0	129
Iron	mg/L	0.005	SM 3120	22-Apr-20/O	< 0.005	0.130	0.020	< 0.005
Magnesium	mg/L	0.02	SM 3120	22-Apr-20/O	28.1	54.0	41.9	20.8
Manganese	mg/L	0.001	SM 3120	22-Apr-20/O	< 0.001	0.007	0.011	0.004
Sodium	mg/L	0.2	SM 3120	22-Apr-20/O	21.4	66.9	22.4	44.5

M. Duti

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an * Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie

Michelle Dubien Lab Manager

Final Report

C.O.C.: G93109

Report To:

Cambium Environmental PO Box 325, 52 Hunter Street East Peterborough ON K9H 1G5 Canada <u>Attention:</u> Stephanie Reeder

DATE RECEIVED: 21-Apr-20 DATE REPORTED: 28-Apr-20

SAMPLE MATRIX: Groundwater

REPORT No. B20-10308

Caduceon Environmental Laboratories 285 Dalton Ave Kingston Ontario K7K 6Z1 Tel: 613-544-2001 Fax: 613-544-2770 JOB/PROJECT NO.: Bobcaygeon WDS P.O. NUMBER: 10520-005 WATERWORKS NO.

		1	Client I.D.		97-3	QA/QC	97-2L	00-1-U
			Sample I.D.		B20-10308- 13	B20-10308- 14	B20-10308- 15	B20-10308-16
			Date Collecte	ed	20-Apr-20	20-Apr-20	20-Apr-20	20-Apr-20
Parameter	Units	R.L.	Reference Method	Date/Site Analyzed				
Alkalinity(CaCO3) to pH4.5	mg/L	5	SM 2320B	22-Apr-20/O	635	632	158	260
Conductivity @25°C	µmho/cm	1	SM 2510B	22-Apr-20/O	1750	1760	600	776
pH @25°C	pH Units		SM 4500H	22-Apr-20/O	7.33	7.35	7.74	7.78
Total Dissolved Solids	mg/L	3	SM 2540D	23-Apr-20/O	958	964	311	407
Total Suspended Solids	mg/L	3	SM2540D	22-Apr-20/K	24			
Dissolved Organic Carbon	mg/L	0.2	EPA 415.2	22-Apr-20/O	9.4	9.2	4.7	2.5
BOD(5 day)	mg/L	3	SM 5210B	22-Apr-20/K	< 3			
COD	mg/L	5	SM 5220D	23-Apr-20/O	34	36	18	13
Chloride	mg/L	0.5	SM4110C	23-Apr-20/O	159	159	5.1	78.3
Ammonia (N)-Total	mg/L	0.01	SM4500- NH3-H	22-Apr-20/K	22.8	22.7	0.05	0.05
Sulphate	mg/L	1	SM4110C	23-Apr-20/O	39	39	146	16
Nitrate (N)	mg/L	0.05	SM4110C	23-Apr-20/O	< 0.05	< 0.05	0.67	0.50
Hardness (as CaCO3)	mg/L	1	SM 3120	22-Apr-20/O	655	624	263	288
Barium	mg/L	0.001	SM 3120	22-Apr-20/O	0.399	0.379	0.024	0.068
Boron	mg/L	0.005	SM 3120	22-Apr-20/O	0.657	0.640	0.819	0.012
Calcium	mg/L	0.02	SM 3120	22-Apr-20/O	225	214	57.1	110
Iron	mg/L	0.005	SM 3120	22-Apr-20/O	4.58	3.76	0.017	0.008
Magnesium	mg/L	0.02	SM 3120	22-Apr-20/O	22.6	21.7	29.3	3.22
Manganese	mg/L	0.001	SM 3120	22-Apr-20/O	0.856	0.813	0.005	0.002
Sodium	mg/L	0.2	SM 3120	22-Apr-20/O	112	108	26.8	30.7

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an * Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie

Michelle Dubien Lab Manager

Final Report

C.O.C.: G93109

Report To:

Cambium Environmental PO Box 325, 52 Hunter Street East Peterborough ON K9H 1G5 Canada <u>Attention:</u> Stephanie Reeder

DATE RECEIVED: 21-Apr-20 DATE REPORTED: 28-Apr-20

SAMPLE MATRIX: Groundwater

REPORT No. B20-10308

Caduceon Environmental Laboratories 285 Dalton Ave Kingston Ontario K7K 6Z1 Tel: 613-544-2001 Fax: 613-544-2770 JOB/PROJECT NO.: Bobcaygeon WDS P.O. NUMBER: 10520-005

WATERWORKS NO.

			Client I.D.		00-1-M	00-1-L	97-2-U	97-1-U
			Sample I.D.		B20-10308- 17	B20-10308- 18	B20-10308- 19	B20-10308-20
			Date Collect	ed	20-Apr-20	20-Apr-20	20-Apr-20	20-Apr-20
Parameter	Units	R.L.	Reference Method	Date/Site Analyzed				
Alkalinity(CaCO3) to pH4.5	mg/L	5	SM 2320B	22-Apr-20/O	260	216	340	386
Conductivity @25°C	µmho/cm	1	SM 2510B	22-Apr-20/O	808	893	1100	1320
pH @25°C	pH Units		SM 4500H	22-Apr-20/O	7.87	7.83	7.59	7.47
Total Dissolved Solids	mg/L	3	SM 2540D	23-Apr-20/O	425	473	589	715
Total Suspended Solids	mg/L	3	SM2540D	22-Apr-20/K				
Dissolved Organic Carbon	mg/L	0.2	EPA 415.2	22-Apr-20/O	2.1	2.0	3.3	3.5
BOD(5 day)	mg/L	3	SM 5210B	22-Apr-20/K				
COD	mg/L	5	SM 5220D	23-Apr-20/O	< 5	< 5	< 5	11
Chloride	mg/L	0.5	SM4110C	23-Apr-20/O	36.7	20.9	130	176
Ammonia (N)-Total	mg/L	0.01	SM4500- NH3-H	22-Apr-20/K	0.01	< 0.01	0.01	0.02
Sulphate	mg/L	1	SM4110C	23-Apr-20/O	114	252	18	22
Nitrate (N)	mg/L	0.05	SM4110C	23-Apr-20/O	0.16	0.28	1.60	1.72
Hardness (as CaCO3)	mg/L	1	SM 3120	22-Apr-20/O	417	423	413	651
Barium	mg/L	0.001	SM 3120	22-Apr-20/O	0.027	0.033	0.155	0.401
Boron	mg/L	0.005	SM 3120	22-Apr-20/O	0.264	0.340	0.026	0.023
Calcium	mg/L	0.02	SM 3120	22-Apr-20/O	106	110	158	244
Iron	mg/L	0.005	SM 3120	22-Apr-20/O	0.005	0.191	0.009	0.744
Magnesium	mg/L	0.02	SM 3120	22-Apr-20/O	37.1	35.9	4.50	9.89
Manganese	mg/L	0.001	SM 3120	22-Apr-20/O	0.001	0.006	0.003	0.162
Sodium	mg/L	0.2	SM 3120	22-Apr-20/O	26.5	45.8	77.6	98.1

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an * Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie

Michelle Dubien Lab Manager

Final Report

C.O.C.: G93109

Report To:

Cambium Environmental PO Box 325, 52 Hunter Street East Peterborough ON K9H 1G5 Canada <u>Attention:</u> Stephanie Reeder

DATE RECEIVED: 21-Apr-20 DATE REPORTED: 28-Apr-20

SAMPLE MATRIX: Groundwater

REPORT No. B20-10308

Caduceon Environmental Laboratories 285 Dalton Ave Kingston Ontario K7K 6Z1 Tel: 613-544-2001 Fax: 613-544-2770 JOB/PROJECT NO.: Bobcaygeon WDS P.O. NUMBER: 10520-005 WATERWORKS NO.

			Client I.D.		97-1-M	97-1-L	
			Sample I.D.		B20-10308- 21	B20-10308- 22	
			Date Collect	ed	20-Apr-20	20-Apr-20	
Parameter	Units	R.L.	Reference Method	Date/Site Analyzed			
Alkalinity(CaCO3) to pH4.5	mg/L	5	SM 2320B	22-Apr-20/O	239	230	
Conductivity @25°C	µmho/cm	1	SM 2510B	22-Apr-20/O	612	631	
pH @25°C	pH Units		SM 4500H	22-Apr-20/O	7.88	7.90	
Total Dissolved Solids	mg/L	3	SM 2540D	23-Apr-20/O	318	328	
Total Suspended Solids	mg/L	3	SM2540D	22-Apr-20/K			
Dissolved Organic Carbon	mg/L	0.2	EPA 415.2	22-Apr-20/O	2.7	2.3	
BOD(5 day)	mg/L	3	SM 5210B	22-Apr-20/K			
COD	mg/L	5	SM 5220D	23-Apr-20/O	< 5	< 5	
Chloride	mg/L	0.5	SM4110C	23-Apr-20/O	20.4	18.8	
Ammonia (N)-Total	mg/L	0.01	SM4500- NH3-H	22-Apr-20/K	0.02	< 0.01	
Sulphate	mg/L	1	SM4110C	23-Apr-20/O	44	69	
Nitrate (N)	mg/L	0.05	SM4110C	23-Apr-20/O	1.32	1.47	
Hardness (as CaCO3)	mg/L	1	SM 3120	22-Apr-20/O	312	318	
Barium	mg/L	0.001	SM 3120	22-Apr-20/O	0.109	0.059	
Boron	mg/L	0.005	SM 3120	22-Apr-20/O	0.122	0.207	
Calcium	mg/L	0.02	SM 3120	22-Apr-20/O	93.5	83.9	
Iron	mg/L	0.005	SM 3120	22-Apr-20/O	< 0.005	< 0.005	
Magnesium	mg/L	0.02	SM 3120	22-Apr-20/O	19.0	26.3	
Manganese	mg/L	0.001	SM 3120	22-Apr-20/O	< 0.001	0.001	
Sodium	mg/L	0.2	SM 3120	22-Apr-20/O	18.5	19.7	

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an * Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie

Michelle Dubien Lab Manager

Final Report

C.O.C.: G099370

Report To:

Cambium Environmental PO Box 325, 52 Hunter Street East Peterborough ON K9H 1G5 Canada <u>Attention:</u> Stephanie Reeder

DATE RECEIVED: 11-Nov-20 DATE REPORTED: 01-Apr-21

SAMPLE MATRIX: Groundwater

REPORT No. B20-35710 (i)

Rev. 2

Caduceon Environmental Laboratories 285 Dalton Ave Kingston Ontario K7K 6Z1 Tel: 613-544-2001 Fax: 613-544-2770 JOB/PROJECT NO.: Bobcaygeon WDS P.O. NUMBER: 10520-005

WATERWORKS NO.

			Client I.D.		98-2-M_B	98-2-U_A	98-2-L_C	98-1-L_C
			Sample I.D.		B20-35710-1	B20-35710-2	B20-35710-3	B20-35710-4
			Date Collect	ed	09-Nov-20	09-Nov-20	09-Nov-20	09-Nov-20
Parameter	Units	R.L.	Reference Method	Date/Site Analyzed				
Alkalinity(CaCO3) to pH4.5	mg/L	5	SM 2320B	16-Nov-20/O	191	399	216	157
Conductivity @25°C	µmho/cm	1	SM 2510B	16-Nov-20/O	587	1190	2090	1030
pH @25°C	pH Units		SM 4500H	16-Nov-20/O	7.84	7.38	7.57	7.88
Total Dissolved Solids	mg/L	3	SM 2540D	17-Nov-20/O	304	643	1150	548
Total Suspended Solids	mg/L	3	SM2540D	12-Nov-20/K				
Dissolved Organic Carbon	mg/L	0.2	EPA 415.2	16-Nov-20/O	0.8	0.8	0.3	1.7
BOD(5 day)	mg/L	3	SM 5210B	12-Nov-20/K				
COD	mg/L	5	SM5220C	12-Nov-20/K	< 5	< 5	< 5	< 5
Chloride	mg/L	0.5	SM4110C	13-Nov-20/O	17.4	101	81.4	6.2
Ammonia (N)-Total	mg/L	0.01	SM4500- NH3-H	17-Nov-20/K	0.01	< 0.01	0.06	0.02
Sulphate	mg/L	1	SM4110C	13-Nov-20/O	80	62	980	390
Nitrate (N)	mg/L	0.05	SM4110C	13-Nov-20/O	0.06	1.11	0.34	0.13
Hardness (as CaCO3)	mg/L	1	SM 3120	13-Nov-20/O	290	542	1270	472
Barium	mg/L	0.001	SM 3120	13-Nov-20/O	0.031	0.112	0.014	0.017
Boron	mg/L	0.005	SM 3120	13-Nov-20/O	0.360	0.189	2.00	0.789
Calcium	mg/L	0.02	SM 3120	13-Nov-20/O	72.3	191	314	104
Iron	mg/L	0.005	SM 3120	13-Nov-20/O	< 0.005	0.010	0.171	0.099
Magnesium	mg/L	0.02	SM 3120	13-Nov-20/O	26.7	15.6	117	51.5
Manganese	mg/L	0.001	SM 3120	13-Nov-20/O	< 0.001	0.001	0.040	0.013
Sodium	mg/L	0.2	SM 3120	13-Nov-20/O	16.9	70.1	78.2	63.2

1 Sediment present

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an * Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie Michelle Dubien Lab Manager

Final Report

C.O.C.: G099370

Report To:

Cambium Environmental PO Box 325, 52 Hunter Street East Peterborough ON K9H 1G5 Canada <u>Attention:</u> Stephanie Reeder

DATE RECEIVED: 11-Nov-20 DATE REPORTED: 01-Apr-21

SAMPLE MATRIX: Groundwater

REPORT No. B20-35710 (i)

Rev. 2

Caduceon Environmental Laboratories285 Dalton AveKingston Ontario K7K 6Z1Tel: 613-544-2001Fax: 613-544-2770JOB/PROJECT NO.:Bobcaygeon WDSP.O. NUMBER:10520-005WATERWORKS NO.

			Client I.D.		98-1-M_B	98-1-U_A	98-3-L_C	98-3-M_B
			Sample I.D.		B20-35710-5	B20-35710-6	B20-35710-7	B20-35710-8
			Date Collect	ed	09-Nov-20	09-Nov-20	09-Nov-20	09-Nov-20
Parameter	Units	R.L.	Reference Method	Date/Site Analyzed				
Alkalinity(CaCO3) to pH4.5	mg/L	5	SM 2320B	16-Nov-20/O	243	482	165	178
Conductivity @25°C	µmho/cm	1	SM 2510B	16-Nov-20/O	709	117	761	560
pH @25°C	pH Units		SM 4500H	16-Nov-20/O	7.92	7.09	8.03	8.04
Total Dissolved Solids	mg/L	3	SM 2540D	17-Nov-20/O	368	600	398	290
Total Suspended Solids	mg/L	3	SM2540D	12-Nov-20/K				
Dissolved Organic Carbon	mg/L	0.2	EPA 415.2	16-Nov-20/O	1.5	3.5	1.8	0.9
BOD(5 day)	mg/L	3	SM 5210B	12-Nov-20/K				
COD	mg/L	5	SM5220C	12-Nov-20/K	< 5	< 5	< 5	< 5
Chloride	mg/L	0.5	SM4110C	13-Nov-20/O	17.6	26.7	6.7	10.5
Ammonia (N)-Total	mg/L	0.01	SM4500- NH3-H	17-Nov-20/K	0.01	0.01	0.05	0.03
Sulphate	mg/L	1	SM4110C	13-Nov-20/O	97	48	219	88
Nitrate (N)	mg/L	0.05	SM4110C	13-Nov-20/O	0.12	3.12	0.06	0.36
Hardness (as CaCO3)	mg/L	1	SM 3120	13-Nov-20/O	366	652	297	291
Barium	mg/L	0.001	SM 3120	13-Nov-20/O	0.069	0.237	0.030	0.027
Boron	mg/L	0.005	SM 3120	13-Nov-20/O	0.283	0.211	0.586	0.272
Calcium	mg/L	0.02	SM 3120	13-Nov-20/O	101	239	77.4	69.2
Iron	mg/L	0.005	SM 3120	13-Nov-20/O	0.013	< 0.005	0.176	< 0.005
Magnesium	mg/L	0.02	SM 3120	13-Nov-20/O	27.6	13.2	25.3	28.8
Manganese	mg/L	0.001	SM 3120	13-Nov-20/O	< 0.001	0.001	0.031	0.001
Sodium	mg/L	0.2	SM 3120	13-Nov-20/O	20.2	19.6	65.2	12.8

1 Sediment present

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an * Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie Michelle Dubien Lab Manager

Final Report

C.O.C.: G099370

Report To:

Cambium Environmental PO Box 325, 52 Hunter Street East Peterborough ON K9H 1G5 Canada <u>Attention:</u> Stephanie Reeder

DATE RECEIVED: 11-Nov-20 DATE REPORTED: 01-Apr-21

SAMPLE MATRIX: Groundwater

REPORT No. B20-35710 (i)

Rev. 2

Caduceon Environmental Laboratories 285 Dalton Ave Kingston Ontario K7K 6Z1

Tel: 613-544-2001 Fax: 613-544-2770

JOB/PROJECT NO .: Bobcaygeon WDS

P.O. NUMBER: 10520-005

WATERWORKS NO.

			Client I.D.		98-3-U_A	GW QA/QC #2	97-2-L_C	97-2-U_A
			Sample I.D.		B20-35710-9	B20-35710- 10	B20-35710- 11	B20-35710-12
			Date Collect	ed	09-Nov-20	09-Nov-20	09-Nov-20	09-Nov-20
Parameter	Units	R.L.	Reference Method	Date/Site Analyzed				
Alkalinity(CaCO3) to pH4.5	mg/L	5	SM 2320B	16-Nov-20/O	317	308	154	414
Conductivity @25°C	µmho/cm	1	SM 2510B	16-Nov-20/O	760	754	602	1940
pH @25°C	pH Units		SM 4500H	16-Nov-20/O	7.58	7.54	8.06	7.58
Total Dissolved Solids	mg/L	3	SM 2540D	17-Nov-20/O	398	394	312	1070
Total Suspended Solids	mg/L	3	SM2540D	12-Nov-20/K				
Dissolved Organic Carbon	mg/L	0.2	EPA 415.2	16-Nov-20/O	1.1	1.1	0.8	0.3
BOD(5 day)	mg/L	3	SM 5210B	12-Nov-20/K				
COD	mg/L	5	SM5220C	12-Nov-20/K	40	48	< 5	< 5
Chloride	mg/L	0.5	SM4110C	13-Nov-20/O	30.2	29.6	4.6	351
Ammonia (N)-Total	mg/L	0.01	SM4500- NH3-H	17-Nov-20/K	0.03	0.03	< 0.01	0.22
Sulphate	mg/L	1	SM4110C	13-Nov-20/O	16	16	147	28
Nitrate (N)	mg/L	0.05	SM4110C	13-Nov-20/O	1.07	1.05	0.22	3.06
Hardness (as CaCO3)	mg/L	1	SM 3120	13-Nov-20/O	411	408	282	655
Barium	mg/L	0.001	SM 3120	13-Nov-20/O	0.170	0.169	0.023	0.374
Boron	mg/L	0.005	SM 3120	13-Nov-20/O	0.080	0.080	0.807	0.108
Calcium	mg/L	0.02	SM 3120	13-Nov-20/O	151	150	65.1	250
Iron	mg/L	0.005	SM 3120	13-Nov-20/O	< 0.005	< 0.005	0.077	0.815
Magnesium	mg/L	0.02	SM 3120	13-Nov-20/O	8.09	8.06	29.1	7.40
Manganese	mg/L	0.001	SM 3120	13-Nov-20/O	0.001	0.001	0.005	0.034
Sodium	mg/L	0.2	SM 3120	13-Nov-20/O	13.7	13.7	24.7	198

1 Sediment present

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an * Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie Michelle Dubien Lab Manager

Final Report

C.O.C.: G099370

Report To:

Cambium Environmental PO Box 325, 52 Hunter Street East

Peterborough ON K9H 1G5 Canada <u>Attention:</u> Stephanie Reeder

DATE RECEIVED: 11-Nov-20

DATE REPORTED: 01-Apr-21

SAMPLE MATRIX: Groundwater

REPORT No. B20-35710 (i)

Rev. 2

Caduceon Environmental Laboratories 285 Dalton Ave Kingston Ontario K7K 6Z1 Tel: 613-544-2001 Fax: 613-544-2770 JOB/PROJECT NO.: Bobcaygeon WDS

P.O. NUMBER: 10520-005

WATERWORKS NO.

			Oliver (L D		07.0	04/004	00411-	00.4.14.1
			Client I.D.		97-3_a	QA/QC 1	00-1-U_a	00-1-M_b
			Sample I.D.		B20-35710- 13	B20-35710- 14	B20-35710- 15	B20-35710-16
			Date Collect	ed	09-Nov-20	09-Nov-20	09-Nov-20	09-Nov-20
Parameter	Units	R.L.	Reference Method	Date/Site Analyzed				
Alkalinity(CaCO3) to pH4.5	mg/L	5	SM 2320B	16-Nov-20/O	570	575	285	254
Conductivity @25°C	µmho/cm	1	SM 2510B	16-Nov-20/O	1250	1260	1080	804
pH @25°C	pH Units		SM 4500H	16-Nov-20/O	7.12	7.31	7.70	7.89
Total Dissolved Solids	mg/L	3	SM 2540D	17-Nov-20/O	677	678	580	422
Total Suspended Solids	mg/L	3	SM2540D	12-Nov-20/K	18			
Dissolved Organic Carbon	mg/L	0.2	EPA 415.2	16-Nov-20/O	7.4	7.1	0.5	0.9
BOD(5 day)	mg/L	3	SM 5210B	12-Nov-20/K	< 3			
COD	mg/L	5	SM5220C	12-Nov-20/K	7	10	< 5	< 5
Chloride	mg/L	0.5	SM4110C	13-Nov-20/O	30.2	30.4	144	35.9
Ammonia (N)-Total	mg/L	0.01	SM4500- NH3-H	17-Nov-20/K	14.4	14.4	0.04	0.04
Sulphate	mg/L	1	SM4110C	13-Nov-20/O	22	22	25	107
Nitrate (N)	mg/L	0.05	SM4110C	13-Nov-20/O	0.09	< 0.05	1.00	< 0.05
Hardness (as CaCO3)	mg/L	1	SM 3120	13-Nov-20/O	637	639	341	403
Barium	mg/L	0.001	SM 3120	13-Nov-20/O	0.339	0.338	0.082	0.030
Boron	mg/L	0.005	SM 3120	13-Nov-20/O	0.540	0.528	0.017	0.233
Calcium	mg/L	0.02	SM 3120	13-Nov-20/O	226	227	129	106
Iron	mg/L	0.005	SM 3120	13-Nov-20/O	5.85	5.82	0.023	0.013
Magnesium	mg/L	0.02	SM 3120	13-Nov-20/O	17.6	17.4	4.60	33.6
Manganese	mg/L	0.001	SM 3120	13-Nov-20/O	0.661	0.662	0.023	0.009
Sodium	mg/L	0.2	SM 3120	13-Nov-20/O	43.1	42.4	49.3	30.8

1 Sediment present

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an * Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie Michelle Dubien Lab Manager

Final Report

C.O.C.: G099370

Report To:

Cambium Environmental PO Box 325, 52 Hunter Street East Peterborough ON K9H 1G5 Canada <u>Attention:</u> Stephanie Reeder

DATE RECEIVED: 11-Nov-20 DATE REPORTED: 01-Apr-21

SAMPLE MATRIX: Groundwater

REPORT No. B20-35710 (i)

Rev. 2

Caduceon Environmental Laboratories 285 Dalton Ave Kingston Ontario K7K 6Z1 Tel: 613-544-2001 Fax: 613-544-2770 JOB/PROJECT NO.: Bobcaygeon WDS

P.O. NUMBER: 10520-005

WATERWORKS NO.

			Client I.D.		BH16-1D_c	BH16-1S_b	97-1-M_b	97-1-L_c
			Sample I.D.		B20-35710- 17	B20-35710- 18	B20-35710- 19	B20-35710-20
			Date Collect	ed	09-Nov-20	09-Nov-20	09-Nov-20	09-Nov-20
Parameter	Units	R.L.	Reference Method	Date/Site Analyzed				
Alkalinity(CaCO3) to pH4.5	mg/L	5	SM 2320B	16-Nov-20/O	209	298	212	229
Conductivity @25°C	µmho/cm	1	SM 2510B	16-Nov-20/O	656	758	644	685
pH @25°C	pH Units		SM 4500H	16-Nov-20/O	7.78	7.87	7.92	7.84
Total Dissolved Solids	mg/L	3	SM 2540D	17-Nov-20/O	341	396	334	356
Total Suspended Solids	mg/L	3	SM2540D	12-Nov-20/K				
Dissolved Organic Carbon	mg/L	0.2	EPA 415.2	16-Nov-20/O	1.4	2.5	1.3	1.0
BOD(5 day)	mg/L	3	SM 5210B	12-Nov-20/K				
COD	mg/L	5	SM5220C	12-Nov-20/K	< 5	7	< 5	14
Chloride	mg/L	0.5	SM4110C	13-Nov-20/O	19.2	20.0	22.8	28.8
Ammonia (N)-Total	mg/L	0.01	SM4500- NH3-H	17-Nov-20/K	0.05	0.01	< 0.01	0.01
Sulphate	mg/L	1	SM4110C	13-Nov-20/O	115	65	80	87
Nitrate (N)	mg/L	0.05	SM4110C	13-Nov-20/O	< 0.05	0.59	0.18	0.11
Hardness (as CaCO3)	mg/L	1	SM 3120	13-Nov-20/O	343	416	345	335
Barium	mg/L	0.001	SM 3120	13-Nov-20/O	0.016	0.112	0.064	0.053
Boron	mg/L	0.005	SM 3120	13-Nov-20/O	0.569	0.182	0.248	0.238
Calcium	mg/L	0.02	SM 3120	13-Nov-20/O	73.5	134	89.2	88.3
Iron	mg/L	0.005	SM 3120	13-Nov-20/O	0.054	0.032	0.010	0.026
Magnesium	mg/L	0.02	SM 3120	13-Nov-20/O	38.7	19.6	29.7	27.8
Manganese	mg/L	0.001	SM 3120	13-Nov-20/O	0.024	0.007	0.001	0.004
Sodium	mg/L	0.2	SM 3120	13-Nov-20/O	20.4	32.8	15.6	19.5

1 Sediment present

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an * Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie Michelle Dubien Lab Manager

Final Report

C.O.C.: G099370

Report To:

Cambium Environmental PO Box 325, 52 Hunter Street East Peterborough ON K9H 1G5 Canada <u>Attention:</u> Stephanie Reeder

DATE RECEIVED: 11-Nov-20 DATE REPORTED: 01-Apr-21

SAMPLE MATRIX: Groundwater

REPORT No. B20-35710 (i)

Rev. 2

Caduceon Environmental Laboratories 285 Dalton Ave Kingston Ontario K7K 6Z1 Tel: 613-544-2001 Fax: 613-544-2770

JOB/PROJECT NO.: Bobcaygeon WDS

P.O. NUMBER: 10520-005

WATERWORKS NO.

		1	Client I.D.		97-1-U a	00-1-L c	
			Sample I.D.		 B20-35710- 21	 B20-35710- 22	
			Date Collect	ed	09-Nov-20	09-Nov-20	
Parameter	Units	R.L.	Reference Method	Date/Site Analyzed			
Alkalinity(CaCO3) to pH4.5	mg/L	5	SM 2320B	16-Nov-20/O	376	183	
Conductivity @25°C	µmho/cm	1	SM 2510B	16-Nov-20/O	998	884	
pH @25°C	pH Units		SM 4500H	16-Nov-20/O	7.62	7.84	
Total Dissolved Solids	mg/L	3	SM 2540D	17-Nov-20/O	532	468	
Total Suspended Solids	mg/L	3	SM2540D	12-Nov-20/K			
Dissolved Organic Carbon	mg/L	0.2	EPA 415.2	16-Nov-20/O	3.1	1.1	
BOD(5 day)	mg/L	3	SM 5210B	12-Nov-20/K			
COD	mg/L	5	SM5220C	12-Nov-20/K	95	< 5	
Chloride	mg/L	0.5	SM4110C	13-Nov-20/O	67.5	11.1	
Ammonia (N)-Total	mg/L	0.01	SM4500- NH3-H	17-Nov-20/K	0.05	0.03	
Sulphate	mg/L	1	SM4110C	13-Nov-20/O	23	275	
Nitrate (N)	mg/L	0.05	SM4110C	13-Nov-20/O	2.02	0.11	
Hardness (as CaCO3)	mg/L	1	SM 3120	13-Nov-20/O	2160	421	
Barium	mg/L	0.001	SM 3120	13-Nov-20/O	0.427	0.037	
Boron	mg/L	0.005	SM 3120	13-Nov-20/O	0.059	0.317	
Calcium	mg/L	0.02	SM 3120	13-Nov-20/O	840 ¹	116	
Iron	mg/L	0.005	SM 3120	13-Nov-20/O	0.022	0.013	
Magnesium	mg/L	0.02	SM 3120	13-Nov-20/O	13.4	31.9	
Manganese	mg/L	0.001	SM 3120	13-Nov-20/O	1.43	0.004	
Sodium	mg/L	0.2	SM 3120	13-Nov-20/O	45.0	43.8	

1 Sediment present

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an * Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie Michelle Dubien Lab Manager

Final Report

C.O.C.: G099370

Report To:

Cambium Environmental PO Box 325, 52 Hunter Street East Peterborough ON K9H 1G5 Canada <u>Attention:</u> Stephanie Reeder

DATE RECEIVED: 11-Nov-20 DATE REPORTED: 01-Apr-21

SAMPLE MATRIX: Groundwater

REPORT No. B20-35710 (ii)

Rev. 2

Caduceon Environmental Laboratories285 Dalton AveKingston Ontario K7K 6Z1Tel: 613-544-2001Fax: 613-544-2770JOB/PROJECT NO.:Bobcaygeon WDSP.O. NUMBER:10520-005

WATERWORKS NO.

			Client I.D.		98-2-U_A	98-2-L_C	
			Sample I.D.		B20-35710-2	B20-35710-3	
			Date Collect	ed	09-Nov-20	09-Nov-20	
Parameter	Units	R.L.	Reference Method	Date/Site Analyzed			
Acetone	µg/L	30	EPA 8260	20-Nov-20/R	< 30	< 30	
Benzene	µg/L	0.5	EPA 8260	20-Nov-20/R	< 0.5	< 0.5	
Bromodichloromethane	µg/L	2	EPA 8260	20-Nov-20/R	< 2	< 2	
Bromoform	µg/L	5	EPA 8260	20-Nov-20/R	< 5	< 5	
Bromomethane	µg/L	0.5	EPA 8260	20-Nov-20/R	< 0.5	< 0.5	
Carbon Tetrachloride	µg/L	0.2	EPA 8260	20-Nov-20/R	< 0.2	< 0.2	
Chloroethane	µg/L	3	EPA 8260	20-Nov-20/R	< 3	< 3	
Chloroform	µg/L	1	EPA 8260	20-Nov-20/R	< 1	< 1	
Chloromethane	µg/L	2	EPA 8260	20-Nov-20/R	< 2	< 2	
Dibromochloromethane	µg/L	2	EPA 8260	20-Nov-20/R	< 2	< 2	
Dibromoethane,1,2- (Ethylene Dibromide)	µg/L	0.2	EPA 8260	20-Nov-20/R	< 0.2	< 0.2	
Dichlorobenzene,1,2-	µg/L	0.5	EPA 8260	20-Nov-20/R	< 0.5	< 0.5	
Dichlorobenzene,1,3-	µg/L	0.5	EPA 8260	20-Nov-20/R	< 0.5	< 0.5	
Dichlorobenzene,1,4-	µg/L	0.5	EPA 8260	20-Nov-20/R	< 0.5	< 0.5	
Dichlorodifluoromethane	µg/L	2	EPA 8260	20-Nov-20/R	< 2	< 2	
Dichloroethane,1,1-	µg/L	0.5	EPA 8260	20-Nov-20/R	< 0.5	< 0.5	
Dichloroethane,1,2-	µg/L	0.5	EPA 8260	20-Nov-20/R	< 0.5	< 0.5	
Dichloroethene, cis-1,2-	µg/L	0.5	EPA 8260	20-Nov-20/R	< 0.5	< 0.5	
Dichloroethene, trans-1,2-	µg/L	0.5	EPA 8260	20-Nov-20/R	< 0.5	< 0.5	
Dichloroethylene,1,1-	µg/L	0.5	EPA 8260	20-Nov-20/R	< 0.5	< 0.5	
Dichloromethane (Methylene Chloride)	µg/L	5	EPA 8260	20-Nov-20/R	< 5	< 5	
Dichloropropane,1,2-	µg/L	0.5	EPA 8260	20-Nov-20/R	< 0.5	< 0.5	
Dichloropropene 1,3- cis+trans	µg/L	0.5	EPA 8260	20-Nov-20/R	< 0.5	< 0.5	
Dichloropropene, cis-1,3-	µg/L	0.5	EPA 8260	20-Nov-20/R	< 0.5	< 0.5	
Dichloropropene trans-1.3-	ua/l	0.5	EPA 8260	20-Nov-20/R	< 0.5	< 0.5	

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an * Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie Michelle Dubien Lab Manager

Final Report

C.O.C.: G099370

Report To:

Cambium Environmental PO Box 325, 52 Hunter Street East Peterborough ON K9H 1G5 Canada <u>Attention:</u> Stephanie Reeder

DATE RECEIVED: 11-Nov-20 DATE REPORTED: 01-Apr-21

SAMPLE MATRIX: Groundwater

REPORT No. B20-35710 (ii)

Rev. 2

Caduceon Environmental Laboratories285 Dalton AveKingston Ontario K7K 6Z1Tel: 613-544-2001Fax: 613-544-2770JOB/PROJECT NO.:Bobcaygeon WDSP.O. NUMBER:10520-005WATERWORKS NO.

			Client I.D.		98-2-U_A	98-2-L_C	
			Sample I.D.		B20-35710-2	B20-35710-3	
			Date Collect	ed	09-Nov-20	09-Nov-20	
Parameter	Units	R.L.	Reference Method	Date/Site Analyzed			
Dichloropropene,1,1-	µg/L	0.2	EPA 8260	20-Nov-20/R	< 0.2	< 0.2	
Ethylbenzene	µg/L	0.5	EPA 8260	20-Nov-20/R	< 0.5	< 0.5	
Hexane	µg/L	5	EPA 8260	20-Nov-20/R	< 5	< 5	
Methyl Ethyl Ketone	µg/L	20	EPA 8260	20-Nov-20/R	< 20	< 20	
Methyl Isobutyl Ketone	µg/L	20	EPA 8260	20-Nov-20/R	< 20	< 20	
Methyl-t-butyl Ether	µg/L	2	EPA 8260	20-Nov-20/R	< 2	< 2	
Monochlorobenzene (Chlorobenzene)	µg/L	0.5	EPA 8260	20-Nov-20/R	< 0.5	< 0.5	
Styrene	µg/L	0.5	EPA 8260	20-Nov-20/R	< 0.5	< 0.5	
Tetrachloroethane,1,1,1,2-	µg/L	0.5	EPA 8260	20-Nov-20/R	< 0.5	< 0.5	
Tetrachloroethane,1,1,2,2-	µg/L	0.5	EPA 8260	20-Nov-20/R	< 0.5	< 0.5	
Tetrachloroethylene	µg/L	0.5	EPA 8260	20-Nov-20/R	< 0.5	< 0.5	
Toluene	µg/L	0.5	EPA 8260	20-Nov-20/R	< 0.5	< 0.5	
Trichloroethane,1,1,1-	µg/L	0.5	EPA 8260	20-Nov-20/R	< 0.5	< 0.5	
Trichloroethane,1,1,2-	µg/L	0.5	EPA 8260	20-Nov-20/R	< 0.5	< 0.5	
Trichloroethylene	µg/L	0.5	EPA 8260	20-Nov-20/R	< 0.5	< 0.5	
Trichlorofluoromethane	µg/L	5	EPA 8260	20-Nov-20/R	< 5	< 5	
Trimethylbenzene,1,3,5-	µg/L	0.1	EPA 8260	20-Nov-20/R	< 0.1	< 0.1	
Vinyl Chloride	µg/L	0.2	EPA 8260	20-Nov-20/R	< 0.2	< 0.2	
Xylene, m,p-	µg/L	1.0	EPA 8260	20-Nov-20/R	< 1.0	< 1.0	
Xylene, m,p,o-	µg/L	1.1	EPA 8260	20-Nov-20/R	< 1.1	< 1.1	
Xvlene o-	ua/l	0.5	EPA 8260	20-Nov-20/R	< 0.5	< 0.5	

1 Revised to include additional VOC parameter

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an * Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie Michelle Dubien Lab Manager

> Appendix D Photographs

Photograph 1: Monitors 97-1-U, 97-1-M, and 97-1-L, April 2020

Photograph 2: Monitors 97-1-U, 97-1-M, and 97-1-L, April 2019

Photograph 3: Monitors 97-2-U and 97-2-L, April 2020

Photograph 4: Monitors 97-2-U and 97-2-L, April 2019

Photograph 5: Monitor 97-3, April 2019

Photograph 6: Monitors 98-1-U, 98-1-M, and 98-1-L, April 2020

Photograph 7: Monitors 98-1-U, 98-1-M, and 98-1-L, November 2019

Photograph 8: Monitors 98-2-U, 98-2-M, and 98-2-L, April 2019

Photograph 9: Monitors 98-3-U, 98-3-M, and 98-3-L, April 2020

Photograph 10: Monitors 98-3-U, 98-3-M, and 98-3-L, April 2020

Photograph 11: Monitors 00-1-U, 00-1-M, and 00-1-L, April 2019

Photograph 12: Monitors 00-1-U, 00-1-M, and 00-1-L, April 2019

Photograph 13: Monitors BH16-1D and BH16-1S, November 2019

Photograph 14: Monitors BH16-1D and BH16-1S, April 2019

> Appendix E Borehole Logs

HYDROTERRA LIMITED

BOREHOLE NO. 97-1

PROJECT NO. 1400

FIELD SUPERVISOR LB

Dec 18/97

LB .

DATE

ENGINEER

16 Glamis Place, Thomhill, Onlario 137 367

PROJECT NAME ______ North Harvey Landfill

CLIENT _____ Township of Harvey

BOREHOLE TYPE ______ Air-Rotary (150 mm Dia)

GROUND ELEVATION _______ 88.75 m (Relative)

CONE PENETRATION SAMPLE STRATIGRAPHY WATER CONTENT % * 14 WATER SPT 'N' VALUE NOD REMARKS RECOVERY STRATIGRAPHIC DESCRIPTION MONITOR TYPE 'N' VALUE DEPTH {m} 1 1 (98) WP WL SS SHEAR DMS . Brown, dry to moist SAND, with some GRAVEL sizes, occasional cobbles المعادية المستحي 4.75 • 5 Grey to light grey LIMESTONE; no . significant water-bearing fractures 10 17 15 1 1 17.06 2.5 50 mm PVC screens set from 4.9 to 6.4 m; 9.1 to 10.7 m; and 20 15.2 to 15.8 m . 1 1. 5

HYDROTERR	a limited	BOREHOLE NO.	97-2	 	
15 Glamis Piace,	Thornhill, Ontorio 13T 3G7				
PROJECT NAME	North . Landfill			PROJECT NO.	1400
CLIENT	Township of Harvey		1997-1997. 1	DATE	Dec 19/97
BOREHOLE TYPE	Air-Rotary (150 mm D	ia)		FIELD SUPERVI	SOR LB
GROUND ELEVATIO	DN <u>94.95 m (Relative</u>	e) -			LB

111-4-

1

100

1 :

1

11. 11.

en generation a

1 - 1

1 . i

1

			6			\$	SAMPL	ε	i Internet	CC	NE	1			
	DEPTH (m)	STRATIGRAPHIC DESCRIPTION	THATIGRAPHY	MONITOR DETAILS D S	TYPE O	'N' VALUE	15 WATER	14 RECOVERN	HOD (%)	SI 'N' V.			ATER TENT %	REMARKS	
	5	Brown, dry to moist SAND, with some GRAVEL, occasional cobbles								STRENG	27/4		WL	-	·
		Grey to light grey . LIMESTONE; no significant water-bearing fractures	· · · · · · · · · · · · · · · · · · ·												
15		50 mm PVC screens set from 7.0 to 8.5 and 11.6 to 13.1 m													

E

	HYDROTER	RA LIMITED	BOREHOLE N	O _a <u>97-3</u>		
	15 Glamis Piace	, Thornhill, Onlario 137 367	1		7	
PROJEC	T NAME	North Harvey Landfi]]		PROJECT NO	1 400
CLIENT .	•	Township of Harvey			DATE	Dec 19/97
BOREHO	LE TYPE	Air-Rotary (150 mm)	Dia)	0.01		AVISOR LE
GROUND	ELEVATI	ON _91.82 m (Relativ	ve)		ENGINEER	LB .

1			·	2		·		SAMPL	Ę		CONE	:	
	DEPTH (m)	STRATIGRAPHIC DESCRIPTION		FRATIGRAPHY	MONITOR DETAILS	TYPE S	'N' VALUE	14 WATER	% HECOVERY	FIQU (54)	SPT W VALUE	WATER CONTENT %	Reharks
	3.05	Brown, moist to wet SAND and GRAVEL			· · · ·								
. 5		Grey LIMESTONE, significant fracture at 4.6 m											
	7.01	500 PVC screen set from 3.4 to 4.6 m											
		•											

1

HYDROTERRA LIMITED

BOREHOLE NO. 98-1

15 Glamis Piece. Thornhill, Ontario L3T 3G7

 PROJECT NAME
 North Landfill Investigation
 PROJECT NO.
 1400A

 CLIENT
 Township of Galway-Cavendish-Harvey
 DATE
 Dec 16/98

 BOREHOLE TYPE
 Air Rotary (150 mm diameter)
 FIELD SUPERVISOR
 LB

 GROUND ELEVATION
 89.09 m (relative)
 ENGINEER
 LB

		S	1000.0			SAMPL	.Ε		CONE	<u> </u>	
DEPTH (m)	STRATIGRAPHIC DESCRIPTION	'AATIGAAPHY	MONITOR DETAILS DMS	TYPE	'N' VALUE	56 WATER	% RECOVERY	HOD (96)	SPT 'N' VALUE I I SHEAR		REMARKS
3.05	Brown SAND and GRAVEL, moist								STRENGTH		
	Grey to light grey LIMESTONE; discernable water-bearing fracture at 4.30 metres										50 mm PVC screens set from 3.5 to 5.0 m; 7.5 to 9.0 m; 11.9 to 13.4 m.

HYDROTERRA LIMITED

15 Glansis Place, Thomhill, Ontario 131 3G7

BOREHOLE NO. 98-2

PROJECT NAME	North Landfill Investigation	PBO LECT NO	14008
CLIENT	Township of Galway-Cavendish-Harvey	DATE	Day 17(00
BOREHOLE TYPE	Air Rotary (150 mm diameter)	DATE	Dec 17/98
GROUND ELEVATION	90.83 m (relative)	FIELD SUPERVI	SOR LB

ENGINEER

LB

SAMPLE STRATIGNAPHY CONE PENETRATION WATER CONTENT % 96 DEPTH STRATIGRAPHIC DESCRIPTION 'N' VALUE % WATER MONITOR SPT RECOVERY HQD (m) TYPE REMARKS (96) ÷ DMS W P SHEAR STRENGTH WL Brown SAND and GRAVEL, moist . 4.80 5 ----Grey to light grey LIMESTONE; πο ; 50 mm PVC screens significant water-bearing set from •. 8.7 to 9.2 m; 14.1 to 15.6 m; 21.2 to 22.5 m. fractures -. • i . 4 -• OF , F `•• • , • • .0 . 1111 8 15 ŧ .. . 20 . . 2.0 4 5 . 2 • . . 11111 22.71 . .

BELD SUPERVISOR LB IROUND ELEVATION 88.45 m (relative) ENGINEER LB DEPTH (m) STRATIGRAPHIC DESCRIPTION Image: Strate in the image:	LIENT _	Township of FTYPE Air Potary (Galwa	y-Cavendi	sh-H	arve	у			PRO DAT	JECT NO	1400A Dec 17/98
DEPTH (m) STRATIGRAPHIC DESCRIPTION SAMPLE WATER WATER CONTENT % WATER CONTENT % SPT CONTENT % WATER CONTENT % SPT CONTENT % WATER CONTENT % SPT CONTENT % SPT SPT CONTENT % SPT CONTENT % SPT CONTENT % SPT CONTENT % SPT CONTENT % SPT CONTENT % SPT SPT SPT SPT SPT SPT SPT SPT SPT SPT	ROUND	ELEVATION 88.45 m (re	lativ	e)	<u>.)</u>					_ FIEL	D SUPER	VISOR LB
DEPTH (m) STRATIGRAPHIC DESCRIPTION IMANTOR BETALLS Image: Stream of the					1		SAMPL	E		CONF		
Brown sand and GRAVEL, bouldery, moist Brown sand and GRAVEL, bouldery, moist Some Significant water- bearing fractures Some Some Some Some Some Some Some Some	HTPEG (m)	STRATIGRAPHIC DESCRIPTION	тяатіснарну	MONITOR DETAILS	TYPE	'N' VALUE	96 WATER	% RECOVE	ROD (\$6)	PENETRATION SPT 'N' VALUE	WATER CONTENT %	REMARKS
	4.72	Brown sand and GRAVEL, bouldery, moist Grey to light grey LIMESTONE; no significant water- bearing fractures										50 mm PVC screens set from 5.9 to 7.4 m; 11.0 to 12.5 m 15.5 to 17.4 m

1.

·

HYDROTERRA 15 Glamit Place, II	LIMITED BOREHOLE NO. 00-1	
PROJECT NAME _	North Landfill Investigation	PROJECT NO. 1400A
CLIENT	Township of Galway-Cavendish-Harvey	DATE Jan 10/00
BOREHOLE TYPE	Air Rotary (150 mm diameter)	
GROUND ELEVATIO	N	ENGINEER LB

Т

		in in	MONITOR DETAILS			<u>, </u>	AMPLE			CONE PENETRATION					
DEPTH (m)	STRATIORAPHIC DESCRIPTION	TRATIGRAPHY			TYPE SS	'H WATER		% HECOVERY	FIGD. (%)	SPT 'N' VALUE t i L i SHEAR		CONTENT %		REMARKS	
3.0	Sand, gravel boulders, very dense, dry									3 Kerd				Borehole cased to 3.1 metres, and sand backfill	
	Grey to light grey LIMESTONE; noticeable water- bearing fracture at 5.2 to 7.0 metres													opposite screened intervals. 50 mm PVC screens set from 6.1 to 7.6 m; 10.7 to 12.2 m; and 16.8 to 18.3 m. Bentonite seals set from 3.0 to 4.6 m; 7.9 to 9.5 m; and 12.8 to 14.9 m.	
20			<u>+</u>												

BOREHOLE NO. BH16-1d

PAGE 1 of 1

PROJECT NAME: BOBCAYGEON LANDFILL

PROJECT NO.: 121-15605-01

DATE COMPLETED: Oct 11, 2016

CLIENT: MUNICIPALITY OF TRENT LAKES

BOREHOLE TYPE: 168 mm AIR HAMMER DRILL

SUPERVISOR: TB

GROUND ELEVATION: NOT DETERMINED

REVIEWER: LJG

						S	SAMPL	E		CONE PENETRATION	WATER			
			TRA-					%			CONT	ENT %		
	EPTH (m)	STRATIGRAPHIC DESCRIPTION	TIGF	MONITOR DETAILS	-	z	% V	REC	RC	10 20 30	10 2	0 30	REMARKS	
	()		API	DEMALO	YPE	ALL	VAT	Ň	D (9					
			Η			Ē	R	ERY	6	SHEAR	Wa	W.		
0.0		SAND AND GRAVEL:	8.0								VVP	V VL	Monitoring well installed with 50	
		Brown SAND AND GRAVEL, trace to some cobbles	0.0										mm inner diameter, schedule 40 PVC risers, with a 3.04 m length	
			3.0										No. 10 screen size well screen.	
1.0			0°											
			0 \$											
			000											
2.0	1													
			00											
3.0			lo°6											
			$\hat{\mathbf{x}}$											
4.0														
			9,0											
-			\$0. *											
5.0			80											
			000											
	5.8	LIMESTONE BEDDOCK.												
6.0		Grey LIMESTONE (chip samples), presumed Verulam												
		Formation.												
70														
7.0	1													
80														
0.0	į													
00 28/1														
ю́ –]													
B														
01SP 10.0														
S B/														
Ĩ.														
HU 11.0	į													
DAG]									
<u>r</u>	ł													
12.0	1												Groundwater at 11.9 m below	
DRA					1								ground surface	
z														
Щ <u>13.0</u>														
2 CA														
BOE	1													
<u>()</u> 14.0														
Σ														
0 15.0														
EOL	15.2 —	Borehole terminated at 15.2 m below ground surface in											Borehole open upon completion of	
P G	1	LIMESTONE BEDROCK.											drilling.	
× 16.0														

BOREHOLE NO. BH16-1s

PAGE 1 of 1

PROJECT NAME: BOBCAYGEON LANDFILL

PROJECT NO.: 121-15605-01

DATE COMPLETED: Oct 11, 2016

CLIENT: MUNICIPALITY OF TRENT LAKES

BOREHOLE TYPE: 168 mm AIR HAMMER DRILL

SUPERVISOR: TB

GROUND ELEVATION: NOT DETERMINED

REVIEWER: LJG

				လု			SAMPLE		CONE PENETRATION	WATER				
				TRA					%			CON	ITENT %	REMARKS Monitoring well installed with 50 mm inner diameter, schedule 40 PVC risers, with a 1.53 m length No. 10 screen size well screen. Groundwater at 6.4 m below ground surface Borehole open upon completion of drilling.
	DE	EPTH (m)	STRATIGRAPHIC DESCRIPTION		MONITOR	TYF	N VAI	%	RE	л	"N" VALUE	10	20 30	REMARKS
	- '				DETAILS			WA	Ö	8 B			20 30	-
				PHY		m̃	Ē	ΠĒ	Ē	(%)	SHEAR			
	0.0							~~~	~		STRENGTH	W_{P}	WL	
			SAND AND GRAVEL:	800										Monitoring well installed with 50 mm inner diameter, schedule 40
			and boulders, moist	000										PVC risers, with a 1.53 m length
				3,0										NO. TO SCIECTI SIZE WEIL SCIECTI.
				000										
				0 V										
				100 PO										
	2.0			200										
				0										
				60										
	3.0													
				000										
				*@ *										
	4.0	3.7	LIMESTONE BEDROCK:											
	4.0		Grey LIMESTONE (chip samples), presumed Verulam Formation.											
	5.0													
	6.0													
														Groundwater at 6.4 m below ground surface
	7.0													ground oundoo
		7.0												
		7.3	Borehole terminated at 7.3 m below ground surface in			1								Borehole open upon completion of drilling
			LIMESTONE BEDROCK.											anning.
	8.0													
3/17														
3/28	9.0													
DT														
0.0														
3AS	10.0													
AS E														
HI														
ЦШ	11.0													
ĮAĢ														
Ъ,														
Ę.	12.0													
RAF														
О́Ш	10.0													
4YG	13.0													
BC/														
BC														
SIC)	14.0													
ETF														
20														
JGK	15.0													
OLC														
GE														
NSF	16.0													
~	10.0											1		1

British Empire Fuels

Vogars	49 DIETOL	<u>۸ (مردو (2)</u> ۵ ۲٫۰	Innantais soconer	LE CETH JOUR VILLE	i¢{		[E.].	since in-	53 AUGURT Pre		
RHAGE	BUNKARS I		Harvay				19		······································	(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(部では
B	irish	Empire Fuels	Box 35	9, Bobcayg	geón,	Ont,	2004		tugis i	2 Sept	港88
· ***					5.0% - 68						
1			LOG OF OVERBURG	IEN AND BED	ROCK	MATER	ALS INCE	NSTAUCTIO			
GCALLA	L COLOUE	KDJT CUHUCH VITERIAL	DTHER	BLIERIALS		<u></u>	GENEA	AL DESCRIP			No. 1994 1.17
Brow	<u>.</u>	Gravel & Clas				1				1234 SEA	6 10 - C
Gray	••,	Limestone				1	aran jiran makinga			90	
Red '		Granite		·		·		•	· · · · ·	e7 / is	TOO Y
·							······································		: 1		
	·····					ļ					
			<u> </u>			 					<u>878</u>
							~~~~~	••••••		· · · ·	
•.*									- 145. 		
·	·	-							<u> </u>		
÷ .		- <del></del>							••••		
-			<u> </u>							·····	
••									1.1.1		
	WAT	A SECORD	CASING &	OPEN HOLE	RECO	90	Z	SF BIENIAS	ates	In the second	
AP . Page		FIED OF HA-IN	142164 9160 BATER, 61 142164	thirdness		10	HU HATEEL	4. Ano 2175		INC HER	••••
97	- June	TASTADUAL	Esteri Esteriors Esteriors			j	ŭ _		-	St ar sector	
		Sally Duisualty	61 Beres soig	.188		20		PLUG	GING & SEAL	ING RECORD	
	6	ALLE Garagente . Osta	Carty Anita			{	inga	10		ITER LEADING AND	
	ă	ALTY SIATEALS	Garazt Garazt				15		Holevlug	· · · · · · · · · · · · · · · · · · ·	
	1.8	Astr Bantats	Dáris sole Díris sole						- Gueernes		
	rest nations Stillt	W RAILER	4 2	effeitstat		•	LO	CATIO	OF WELL	·******	
31/		tes of Marte Le		PUNPISS		LU DIA	RAN EELOW	SHOW DIST	ANCES OF WELL I	ON HOAD AND	
	50	90 90	FG CO	CE BURGE (S					** NE-28:		
ALVE FAL	re. C	Bunde Imperie St		ar type				500'		36	
145895.46 · [7] 6		are storetrate	Start A DECAN	D crenat			Q #	F	1 Alexandre		
		A A A A A A A A A A A A A A A A A A A	20 Part Parts	4 474			6	5	4	ARVEY THE	<u>الج</u> ا
FIN	IL US	R MATCH SUPPLY	C Asinganca, mpus C Asinganca, mpus	AUALIT				//	· ·	ACTA AN ALL ST	
OF W	ill	C TEST HOLE	D UNTINISHED C DEWATERING				1		A		
WAT	i8 .	S BERGSTIR D STOCK	E ADAMENCIAL E NONICIPAL				and the second sec	1	NI :		臺
· U8			C COOLING OR AIR CONST	T106164					N		藏
METU	00 1	A	C 202 40	-36.				24			
OF	CTION	C ROTARY (CONVENTION C ROTARY (REPRESE)	ALI DIANGAD DIJETTING								
		A AIM PERCUPPION	0 0134.44	O STACE	JAIL(19	-				30070	
Wats	B Wat	ACTER BATTE THAT	WELL LIGER	COLTALSTOR'S	2						त्रम् २३ वि. सम्बद्धाः
R.R.	12 0-	<u>- ендаз 466.</u>  Потов О-ь		27	ONI			- T	· · · ·		
PANE OF	WELC 782	ARIÊIYA MATORI AUEL	WELL	TECHNICIAN'S	USE						
JIM	esu		Li <u>s</u> en.	525	*						25